These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28148644)

  • 1. Characteristics of the local cutaneous sensory thermoneutral zone.
    Filingeri D; Zhang H; Arens EA
    J Neurophysiol; 2017 Apr; 117(4):1797-1806. PubMed ID: 28148644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warm hands, cold heart: progressive whole-body cooling increases warm thermosensitivity of human hands and feet in a dose-dependent fashion.
    Filingeri D; Morris NB; Jay O
    Exp Physiol; 2017 Jan; 102(1):100-112. PubMed ID: 27808438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermosensory micromapping of warm and cold sensitivity across glabrous and hairy skin of male and female hands and feet.
    Filingeri D; Zhang H; Arens EA
    J Appl Physiol (1985); 2018 Sep; 125(3):723-736. PubMed ID: 29878872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and tactile interactions in the perception of local skin wetness at rest and during exercise in thermo-neutral and warm environments.
    Filingeri D; Redortier B; Hodder S; Havenith G
    Neuroscience; 2014 Jan; 258():121-30. PubMed ID: 24269934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normative values of skin temperature and thermal sensory thresholds in the pudendal nerve territory.
    Beco J; Seidel L; Albert A
    Neurourol Urodyn; 2015 Aug; 34(6):571-7. PubMed ID: 24782126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running.
    Valenza A; Bianco A; Filingeri D
    J Physiol; 2019 Jul; 597(13):3315-3332. PubMed ID: 31093981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures.
    Filingeri D; Fournet D; Hodder S; Havenith G
    J Appl Physiol (1985); 2014 Oct; 117(8):887-97. PubMed ID: 25103965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution topographical mapping of warm and cold sensitivities.
    Li X; Petrini L; Defrin R; Madeleine P; Arendt-Nielsen L
    Clin Neurophysiol; 2008 Nov; 119(11):2641-6. PubMed ID: 18835741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial summation of thermal sensations depends on skin type and skin sensitivity.
    Defrin R; Petrini L; Arendt-Nielsen L
    Exp Brain Res; 2009 Sep; 198(1):29-36. PubMed ID: 19609516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological variations of warm and cool sense with shift of environmental temperature.
    Hirosawa I; Dodo H; Hosokawa M; Watanabe S; Nishiyama K; Fukuchi Y
    Int J Neurosci; 1984 Nov; 24(3-4):281-8. PubMed ID: 6511215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Warm fibers innervating palmar and digital skin of the monkey: responses to thermal stimuli.
    Darian-Smith I; Johnson KO; LaMotte C; Shigenaga Y; Kenins P; Champness P
    J Neurophysiol; 1979 Sep; 42(5):1297-315. PubMed ID: 114608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.
    Filingeri D; Chaseling G; Hoang P; Barnett M; Davis SL; Jay O
    Exp Physiol; 2017 Aug; 102(8):887-893. PubMed ID: 28488333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of responses of warm and nociceptive C-fiber afferents in monkey with human judgments of thermal pain.
    LaMotte RH; Campbell JN
    J Neurophysiol; 1978 Mar; 41(2):509-28. PubMed ID: 418156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of thermode application pressure on thermal threshold detection.
    Pavlaković G; Klinke I; Pavlaković H; Züchner K; Zapf A; Bachmann CG; Graf BM; Crozier TA
    Muscle Nerve; 2008 Nov; 38(5):1498-1505. PubMed ID: 18932210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics.
    Filingeri D; Ackerley R
    J Neurophysiol; 2017 Apr; 117(4):1761-1775. PubMed ID: 28123008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative sensory testing: effect of site and skin temperature on thermal thresholds.
    Hagander LG; Midani HA; Kuskowski MA; Parry GJ
    Clin Neurophysiol; 2000 Jan; 111(1):17-22. PubMed ID: 10656506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin wetness detection thresholds and wetness magnitude estimations of the human index fingerpad and their modulation by moisture temperature.
    Merrick C; Rosati R; Filingeri D
    J Neurophysiol; 2021 May; 125(5):1987-1999. PubMed ID: 33826451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple apparatus to assess cutaneous thermal sensitivity.
    Bruce MF
    J Neurol Neurosurg Psychiatry; 1982 Jun; 45(6):557-9. PubMed ID: 7119821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional skin wetness perception and its modulation by warm and cold whole body skin temperatures in people with multiple sclerosis.
    Christogianni A; Bibb R; Filtness A; Filingeri D
    Am J Physiol Regul Integr Comp Physiol; 2022 Nov; 323(5):R648-R660. PubMed ID: 36036454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of Clinical Small-Fiber Sensory Testing to Detect Small-Nerve Fiber Degeneration.
    Ridehalgh C; Sandy-Hindmarch OP; Schmid AB
    J Orthop Sports Phys Ther; 2018 Oct; 48(10):767-774. PubMed ID: 29932873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.