These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 28148726)

  • 21. Synchronous and asynchronous bursting states: role of intrinsic neural dynamics.
    Takekawa T; Aoyagi T; Fukai T
    J Comput Neurosci; 2007 Oct; 23(2):189-200. PubMed ID: 17387606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential serotonergic modulation across the main and accessory olfactory bulbs.
    Huang Z; Thiebaud N; Fadool DA
    J Physiol; 2017 Jun; 595(11):3515-3533. PubMed ID: 28229459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronization of bursting neurons: what matters in the network topology.
    Belykh I; de Lange E; Hasler M
    Phys Rev Lett; 2005 May; 94(18):188101. PubMed ID: 15904412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected].
    Volgushev M; Chauvette S; Mukovski M; Timofeev I
    J Neurosci; 2006 May; 26(21):5665-72. PubMed ID: 16723523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulus detection rate and latency, firing rates and 1-40Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model.
    Lundqvist M; Herman P; Palva M; Palva S; Silverstein D; Lansner A
    Neuroimage; 2013 Dec; 83():458-71. PubMed ID: 23851323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct intrinsic membrane properties determine differential information processing between main and accessory olfactory bulb mitral cells.
    Zibman S; Shpak G; Wagner S
    Neuroscience; 2011 Aug; 189():51-67. PubMed ID: 21627980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermittent synchronization in a network of bursting neurons.
    Park C; Rubchinsky LL
    Chaos; 2011 Sep; 21(3):033125. PubMed ID: 21974660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. When two wrongs make a right: synchronized neuronal bursting from combined electrical and inhibitory coupling.
    Reimbayev R; Daley K; Belykh I
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuft calcium spikes in accessory olfactory bulb mitral cells.
    Urban NN; Castro JB
    J Neurosci; 2005 May; 25(20):5024-8. PubMed ID: 15901783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholinergic modulation of neuronal excitability in the accessory olfactory bulb.
    Smith RS; Araneda RC
    J Neurophysiol; 2010 Dec; 104(6):2963-74. PubMed ID: 20861438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell and circuit origins of fast network oscillations in the mammalian main olfactory bulb.
    Burton SD; Urban NN
    Elife; 2021 Oct; 10():. PubMed ID: 34658333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations Of coupled pacemaker neurons.
    Butera RJ; Rinzel J; Smith JC
    J Neurophysiol; 1999 Jul; 82(1):398-415. PubMed ID: 10400967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circuit properties generating gamma oscillations in a network model of the olfactory bulb.
    Bathellier B; Lagier S; Faure P; Lledo PM
    J Neurophysiol; 2006 Apr; 95(4):2678-91. PubMed ID: 16381804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conditional genetic labeling of mitral cells of the mouse accessory olfactory bulb to visualize the organization of their apical dendritic tufts.
    Yonekura J; Yokoi M
    Mol Cell Neurosci; 2008 Apr; 37(4):708-18. PubMed ID: 18201899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of group I metabotropic glutamate receptors enhances persistent sodium current and rhythmic bursting in main olfactory bulb external tufted cells.
    Dong HW; Ennis M
    J Neurophysiol; 2014 Feb; 111(3):641-7. PubMed ID: 24225539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response dynamics of entorhinal cortex in awake, anesthetized, and bulbotomized rats.
    Ahrens KF; Freeman WJ
    Brain Res; 2001 Aug; 911(2):193-202. PubMed ID: 11511390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior.
    Kudela P; Franaszczuk PJ; Bergey GK
    Biol Cybern; 2003 Apr; 88(4):276-85. PubMed ID: 12690486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determinants of spontaneous activity in networks of cultured hippocampus.
    Cohen E; Ivenshitz M; Amor-Baroukh V; Greenberger V; Segal M
    Brain Res; 2008 Oct; 1235():21-30. PubMed ID: 18602907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slow oscillations in neural networks with facilitating synapses.
    Melamed O; Barak O; Silberberg G; Markram H; Tsodyks M
    J Comput Neurosci; 2008 Oct; 25(2):308-16. PubMed ID: 18483841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: an electrical and optical study.
    Kleinfeld D; Delaney KR; Fee MS; Flores JA; Tank DW; Gelperin A
    J Neurophysiol; 1994 Sep; 72(3):1402-19. PubMed ID: 7807221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.