BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28149955)

  • 1. Lewis Acid Induced Toggle from Ir(II) to Ir(IV) Pathways in Photocatalytic Reactions: Synthesis of Thiomorpholines and Thiazepanes from Aldehydes and SLAP Reagents.
    Hsieh SY; Bode JW
    ACS Cent Sci; 2017 Jan; 3(1):66-72. PubMed ID: 28149955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Flow Synthesis of Morpholines and Oxazepanes with Silicon Amine Protocol (SLAP) Reagents and Lewis Acid Facilitated Photoredox Catalysis.
    Jackl MK; Legnani L; Morandi B; Bode JW
    Org Lett; 2017 Sep; 19(17):4696-4699. PubMed ID: 28813158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond.
    Chen JR; Hu XQ; Lu LQ; Xiao WJ
    Acc Chem Res; 2016 Sep; 49(9):1911-23. PubMed ID: 27551740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon Amine Reagents for the Photocatalytic Synthesis of Piperazines from Aldehydes and Ketones.
    Hsieh SY; Bode JW
    Org Lett; 2016 May; 18(9):2098-101. PubMed ID: 27101157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iridium-catalyzed Synthesis of Saturated N-Heterocycles from Aldehydes and SnAP Reagents with Continuous Flow Photochemistry.
    Jindakun C; Hsieh SY; Bode JW
    Org Lett; 2018 Apr; 20(7):2071-2075. PubMed ID: 29558148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Synthesis of N-Unprotected Piperazines, Morpholines, and Thiomorpholines from Aldehydes and SnAP Reagents.
    Luescher MU; Bode JW
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10884-8. PubMed ID: 26212589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.
    Seidel D
    Acc Chem Res; 2015 Feb; 48(2):317-28. PubMed ID: 25560649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Cycloaddition and Cyclization Reactions Catalyzed by Chiral N,N'-Dioxide-Metal Complexes.
    Liu X; Zheng H; Xia Y; Lin L; Feng X
    Acc Chem Res; 2017 Oct; 50(10):2621-2631. PubMed ID: 28967737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral N,N'-dioxides: new ligands and organocatalysts for catalytic asymmetric reactions.
    Liu X; Lin L; Feng X
    Acc Chem Res; 2011 Aug; 44(8):574-87. PubMed ID: 21702458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLAP reagents for the photocatalytic synthesis of C3/C5-substituted, N-unprotected selenomorpholines and 1,4-selenazepanes.
    Zhou G; Deng X; Pan C; Goh ETL; Lakshminarayanan R; Srinivasan R
    Chem Commun (Camb); 2020 Oct; 56(83):12546-12549. PubMed ID: 32940282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
    Wallentin CJ; Nguyen JD; Stephenson CR
    Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic Aerobic Dehydrogenation of N-Heterocycles with Ir(III) Photosensitizers Bearing the 2(2'-Pyridyl)benzimidazole Scaffold.
    Echevarría I; Vaquero M; Manzano BR; Jalón FA; Quesada R; Espino G
    Inorg Chem; 2022 Apr; 61(16):6193-6208. PubMed ID: 35394766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.