These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28150019)

  • 1. Use of chemometrics to optimize a glucose assay on a paper microfluidic platform.
    Avoundjian A; Jalali-Heravi M; Gomez FA
    Anal Bioanal Chem; 2017 Apr; 409(10):2697-2703. PubMed ID: 28150019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed thread/paper-based microfluidic chips as a platform for glucose assays.
    Gonzalez A; Estala L; Gaines M; Gomez FA
    Electrophoresis; 2016 Jul; 37(12):1685-90. PubMed ID: 27060975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thread/paper- and paper-based microfluidic devices for glucose assays employing artificial neural networks.
    Lee W; Gonzalez A; Arguelles P; Guevara R; Gonzalez-Guerrero MJ; Gomez FA
    Electrophoresis; 2018 Jun; 39(12):1443-1451. PubMed ID: 29660155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Paper-based Analytical Devices (μPADs): Miniaturization and Enzyme Storage Studies.
    Ilacas G; Gomez FA
    Anal Sci; 2019 Apr; 35(4):379-384. PubMed ID: 30531127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme Chemotaxis on Paper-based Devices.
    Ilacas GC; Basa A; Sen A; Gomez FA
    Anal Sci; 2018; 34(1):115-119. PubMed ID: 29321451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A magnetically active microfluidic device for chemiluminescence bioassays.
    Zheng Y; Zhao S; Liu YM
    Analyst; 2011 Jul; 136(14):2890-2. PubMed ID: 21647506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (μDiSH-PAD) for Visual Quantitative Point-of-Care Testing.
    Wei X; Tian T; Jia S; Zhu Z; Ma Y; Sun J; Lin Z; Yang CJ
    Anal Chem; 2016 Feb; 88(4):2345-52. PubMed ID: 26765320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Distance-Based Microfluidic Paper-Based Biosensor for Glucose Measurements in Tear Range.
    Allameh S; Rabbani M
    Appl Biochem Biotechnol; 2022 May; 194(5):2077-2092. PubMed ID: 35029790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distance effect of bienzymes on the efficiency of sequential reactions in a microfluidic reactor packed with enzyme-immobilized microbeads.
    Heo J
    Anal Sci; 2014; 30(10):991-7. PubMed ID: 25312630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip.
    Costantini F; Tiggelaar R; Sennato S; Mura F; Schlautmann S; Bordi F; Gardeniers H; Manetti C
    Analyst; 2013 Sep; 138(17):5019-24. PubMed ID: 23831561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices.
    Nie J; Liang Y; Zhang Y; Le S; Li D; Zhang S
    Analyst; 2013 Jan; 138(2):671-6. PubMed ID: 23183392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets.
    Piao Y; Han DJ; Azad MR; Park M; Seo TS
    Biosens Bioelectron; 2015 Mar; 65():220-5. PubMed ID: 25461161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose.
    Zhu X; Huang J; Liu J; Zhang H; Jiang J; Yu R
    Nanoscale; 2017 May; 9(17):5658-5663. PubMed ID: 28422254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays.
    Hadwen B; Broder GR; Morganti D; Jacobs A; Brown C; Hector JR; Kubota Y; Morgan H
    Lab Chip; 2012 Sep; 12(18):3305-13. PubMed ID: 22785575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging.
    de Freitas SV; de Souza FR; Rodrigues Neto JC; Vasconcelos GA; Abdelnur PV; Vaz BG; Henry CS; Coltro WKT
    Anal Chem; 2018 Oct; 90(20):11949-11954. PubMed ID: 30188682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of Enzyme Kinetics on a Microfluidic Device.
    Rho HS; Hanke AT; Ottens M; Gardeniers H
    PLoS One; 2016; 11(4):e0153437. PubMed ID: 27082243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved Fluorescent Detection for Glucose Using a Complex of Luminescent Layered Titanates and Enzymes.
    Sakaguchi Y; Minamikawa T; Yamamuro M; Tsujita T; Ueda T; Kamada K; Soh N
    Anal Sci; 2017; 33(9):989-991. PubMed ID: 28890499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phone camera detection of glucose blood level based on magnetic particles entrapped inside bubble wrap.
    Martinkova P; Pohanka M
    Neuro Endocrinol Lett; 2016 Dec; 37(Suppl1):132-138. PubMed ID: 28263541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online Measurement of Glucose Consumption from HepG2 Cells Using an Integrated Bioreactor and Enzymatic Assay.
    Adams AG; Bulusu RKM; Mukhitov N; Mendoza-Cortes JL; Roper MG
    Anal Chem; 2019 Apr; 91(8):5184-5190. PubMed ID: 30884946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.