These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28150196)

  • 1. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.
    Massey M; Li JJ; Algar WR
    Methods Mol Biol; 2017; 1530():63-97. PubMed ID: 28150196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentric Förster resonance energy transfer imaging.
    Wu M; Algar WR
    Anal Chem; 2015 Aug; 87(16):8078-83. PubMed ID: 26214686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration.
    Wu M; Petryayeva E; Algar WR
    Anal Chem; 2014 Nov; 86(22):11181-8. PubMed ID: 25361050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentric FRET: a review of the emerging concept, theory, and applications.
    Tsai HY; Kim H; Massey M; Krause KD; Algar WR
    Methods Appl Fluoresc; 2019 Jul; 7(4):042001. PubMed ID: 31359875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.
    Kim H; Ng CY; Algar WR
    Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A long-wavelength quantum dot-concentric FRET configuration: characterization and application in a multiplexed hybridization assay.
    Li JJ; Algar WR
    Analyst; 2016 Jun; 141(12):3636-47. PubMed ID: 27048838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots.
    Petryayeva E; Algar WR
    Anal Chem; 2014 Mar; 86(6):3195-202. PubMed ID: 24571675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor.
    Hastman DA; Hooe S; Chiriboga M; Díaz SA; Susumu K; Stewart MH; Green CM; Hildebrandt N; Medintz IL
    ACS Sens; 2024 Jan; 9(1):157-170. PubMed ID: 38160434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates.
    Medintz IL; Clapp AR; Brunel FM; Tiefenbrunn T; Uyeda HT; Chang EL; Deschamps JR; Dawson PE; Mattoussi H
    Nat Mater; 2006 Jul; 5(7):581-9. PubMed ID: 16799548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms.
    Petryayeva E; Algar WR
    Anal Chem; 2013 Sep; 85(18):8817-25. PubMed ID: 23980758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality.
    Algar WR; Khachatrian A; Melinger JS; Huston AL; Stewart MH; Susumu K; Blanco-Canosa JB; Oh E; Dawson PE; Medintz IL
    J Am Chem Soc; 2017 Jan; 139(1):363-372. PubMed ID: 28009161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single quantum dot based nanosensor for renin assay.
    Long Y; Zhang LF; Zhang Y; Zhang CY
    Anal Chem; 2012 Oct; 84(20):8846-52. PubMed ID: 23003565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Förster Resonance Energy Transfer probe with quantum dot for a long-time imaging of active caspases inside individual cells.
    Procházková M; Kuchovská E; Killinger M; Klepárník K
    Anal Chim Acta; 2023 Aug; 1267():341334. PubMed ID: 37257963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.