These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 28150236)

  • 1. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.
    Yao Q; Xu D
    Methods Mol Biol; 2017; 1558():127-138. PubMed ID: 28150236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P³DB 3.0: From plant phosphorylation sites to protein networks.
    Yao Q; Ge H; Wu S; Zhang N; Chen W; Xu C; Gao J; Thelen JJ; Xu D
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1206-13. PubMed ID: 24243849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iPTMnet: Integrative Bioinformatics for Studying PTM Networks.
    Ross KE; Huang H; Ren J; Arighi CN; Li G; Tudor CO; Lv M; Lee JY; Chen SC; Vijay-Shanker K; Wu CH
    Methods Mol Biol; 2017; 1558():333-353. PubMed ID: 28150246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P3DB: a plant protein phosphorylation database.
    Gao J; Agrawal GK; Thelen JJ; Xu D
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D960-2. PubMed ID: 18931372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Reactome: a resource for plant pathways and comparative analysis.
    Naithani S; Preece J; D'Eustachio P; Gupta P; Amarasinghe V; Dharmawardhana PD; Wu G; Fabregat A; Elser JL; Weiser J; Keays M; Fuentes AM; Petryszak R; Stein LD; Ware D; Jaiswal P
    Nucleic Acids Res; 2017 Jan; 45(D1):D1029-D1039. PubMed ID: 27799469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots.
    Sun H; Xia B; Wang X; Gao F; Zhou Y
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29039783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Protein Phosphorylation and Its Functional Impact on Protein-Protein Interactions via Text Mining of the Scientific Literature.
    Wang Q; Ross KE; Huang H; Ren J; Li G; Vijay-Shanker K; Wu CH; Arighi CN
    Methods Mol Biol; 2017; 1558():213-232. PubMed ID: 28150240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis.
    Narushima Y; Kozuka-Hata H; Tsumoto K; Inoue J; Oyama M
    Bioinformatics; 2016 Jul; 32(14):2083-8. PubMed ID: 27153602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fly-DPI: database of protein interactomes for D. melanogaster in the approach of systems biology.
    Lin CY; Chen SH; Cho CS; Chen CL; Lin FK; Lin CH; Chen PY; Lo CZ; Hsiung CA
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S18. PubMed ID: 17254302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. dbPPT: a comprehensive database of protein phosphorylation in plants.
    Cheng H; Deng W; Wang Y; Ren J; Liu Z; Xue Y
    Database (Oxford); 2014; 2014():bau121. PubMed ID: 25534750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics Analysis of PTM-Modified Protein Interaction Networks and Complexes.
    Woodsmith J; Stelzl U; Vinayagam A
    Methods Mol Biol; 2017; 1558():321-332. PubMed ID: 28150245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.
    Domanova W; Krycer J; Chaudhuri R; Yang P; Vafaee F; Fazakerley D; Humphrey S; James D; Kuncic Z
    PLoS One; 2016; 11(6):e0157763. PubMed ID: 27336693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PhosphoPICK: modelling cellular context to map kinase-substrate phosphorylation events.
    Patrick R; Lê Cao KA; Kobe B; Bodén M
    Bioinformatics; 2015 Feb; 31(3):382-9. PubMed ID: 25304781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Useful Web Resources.
    Bui A; Person MD
    Adv Exp Med Biol; 2016; 919():249-253. PubMed ID: 27975223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Tools for the Analysis of Proteomic Data.
    Chisanga D; Keerthikumar S; Mathivanan S; Chilamkurti N
    Methods Mol Biol; 2017; 1549():177-197. PubMed ID: 27975292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing protein-protein interaction networks.
    Koh GC; Porras P; Aranda B; Hermjakob H; Orchard SE
    J Proteome Res; 2012 Apr; 11(4):2014-31. PubMed ID: 22385417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Species PTM Mapping from Phosphoproteomic Data.
    Chaudhuri R; Yang JY
    Methods Mol Biol; 2017; 1558():459-469. PubMed ID: 28150252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PlaPPISite: a comprehensive resource for plant protein-protein interaction sites.
    Yang X; Yang S; Qi H; Wang T; Li H; Zhang Z
    BMC Plant Biol; 2020 Feb; 20(1):61. PubMed ID: 32028878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteome resource for systems biology research.
    Bodenmiller B; Aebersold R
    Methods Mol Biol; 2011; 694():307-22. PubMed ID: 21082442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.