BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 28150399)

  • 1. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries.
    Karimi A; Navidbakhsh M; Shojaei A
    Tissue Cell; 2015 Apr; 47(2):152-8. PubMed ID: 25758947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Bioengineered; 2017 Mar; 8(2):154-170. PubMed ID: 27588460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries.
    Karimi A; Navidbakhsh M; Shojaei A; Faghihi S
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2550-4. PubMed ID: 23623067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling.
    Schriefl AJ; Schmidt T; Balzani D; Sommer G; Holzapfel GA
    Acta Biomater; 2015 Apr; 17():125-36. PubMed ID: 25623592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and constitutive modeling approaches for a study of biomechanical properties of human coronary arteries.
    Jankowska MA; Bartkowiak-Jowsa M; Bedzinski R
    J Mech Behav Biomed Mater; 2015 Oct; 50():1-12. PubMed ID: 26086990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension.
    Lally C; Reid AJ; Prendergast PJ
    Ann Biomed Eng; 2004 Oct; 32(10):1355-64. PubMed ID: 15535054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
    Holzapfel GA; Sommer G; Gasser CT; Regitnig P
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2048-58. PubMed ID: 16006541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries.
    Balzani D; Schröder J; Gross D
    Acta Biomater; 2006 Nov; 2(6):609-18. PubMed ID: 16945600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery.
    Sáez P; García A; Peña E; Gasser TC; Martínez MA
    Acta Biomater; 2016 Mar; 33():183-93. PubMed ID: 26827780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution.
    Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2005 Jun; 127(3):494-503. PubMed ID: 16060356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries.
    Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K
    Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of material models for arterial walls from uniaxial extension tests and histological structure.
    Holzapfel GA
    J Theor Biol; 2006 Jan; 238(2):290-302. PubMed ID: 16043190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening.
    Weisbecker H; Pierce DM; Regitnig P; Holzapfel GA
    J Mech Behav Biomed Mater; 2012 Aug; 12():93-106. PubMed ID: 22659370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmural variation in elastin fiber orientation distribution in the arterial wall.
    Yu X; Wang Y; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():745-753. PubMed ID: 28838859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive biaxial mechanical response of aged human iliac arteries.
    Schulze-Bauer CA; Mörth C; Holzapfel GA
    J Biomech Eng; 2003 Jun; 125(3):395-406. PubMed ID: 12929245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging.
    Taghizadeh H; Tafazzoli-Shadpour M
    J Mech Behav Biomed Mater; 2017 Jan; 65():20-28. PubMed ID: 27544616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of elastin anisotropy in structural strain energy functions of arterial tissue.
    Rezakhaniha R; Fonck E; Genoud C; Stergiopulos N
    Biomech Model Mechanobiol; 2011 Jul; 10(4):599-611. PubMed ID: 21058025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model for understanding the micro-mechanics of collagen fiber network in the tunica adventitia.
    Ayyalasomayajula V; Pierrat B; Badel P
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1507-1528. PubMed ID: 31065952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.