These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28150497)

  • 1. Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques.
    Mao Y; Liu K; Zhan C; Geng L; Chu B; Hsiao BS
    J Phys Chem B; 2017 Feb; 121(6):1340-1351. PubMed ID: 28150497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared.
    Chen ZH; Kim C; Zeng XB; Hwang SH; Jang J; Ungar G
    Langmuir; 2012 Oct; 28(43):15350-61. PubMed ID: 23030297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals.
    Uhlig M; Fall A; Wellert S; Lehmann M; Prévost S; Wågberg L; von Klitzing R; Nyström G
    Langmuir; 2016 Jan; 32(2):442-50. PubMed ID: 26684549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscale spatial distribution of electron spins studied by time-resolved small-angle and ultrasmall-angle neutron scattering with dynamic nuclear polarization: a case of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) doped in high-density polyethylene.
    Kumada T; Noda Y; Koizumi S; Hashimoto T
    J Chem Phys; 2010 Aug; 133(5):054504. PubMed ID: 20707539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and swelling of cross-linked nanocellulose foams.
    Hossain L; Raghuwanshi VS; Tanner J; Wu CM; Kleinerman O; Cohen Y; Garnier G
    J Colloid Interface Sci; 2020 May; 568():234-244. PubMed ID: 32092552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films.
    Zhong T; Dhandapani R; Liang D; Wang J; Wolcott MP; Van Fossen D; Liu H
    Carbohydr Polym; 2020 Jul; 240():116283. PubMed ID: 32475567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of fibre dimension and charge density on nanocellulose gels.
    Mendoza L; Gunawardhana T; Batchelor W; Garnier G
    J Colloid Interface Sci; 2018 Sep; 525():119-125. PubMed ID: 29689416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (
    Zheng D; Zhang Y; Guo Y; Yue J
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate.
    Soeta H; Fujisawa S; Saito T; Berglund L; Isogai A
    ACS Appl Mater Interfaces; 2015 May; 7(20):11041-6. PubMed ID: 25946413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of different methods for extraction of nanocellulose from yerba mate residues.
    Dahlem MA; Borsoi C; Hansen B; Catto AL
    Carbohydr Polym; 2019 Aug; 218():78-86. PubMed ID: 31221346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method.
    Benini KCCC; Voorwald HJC; Cioffi MOH; Rezende MC; Arantes V
    Carbohydr Polym; 2018 Jul; 192():337-346. PubMed ID: 29691029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Evidence of Confined Water in Room-Temperature Ionic Liquids by Complementary Use of Small-Angle X-ray and Neutron Scattering.
    Abe H; Takekiyo T; Shigemi M; Yoshimura Y; Tsuge S; Hanasaki T; Ohishi K; Takata S; Suzuki J
    J Phys Chem Lett; 2014 Apr; 5(7):1175-80. PubMed ID: 26274467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the nature of cellulose microfibrils.
    Su Y; Burger C; Ma H; Chu B; Hsiao BS
    Biomacromolecules; 2015 Apr; 16(4):1201-9. PubMed ID: 25794054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport Properties of Commercial Cellulose Nanocrystals in Aqueous Suspension Prepared from Chemical Pulp via Sulfuric Acid Hydrolysis.
    Arai K; Horikawa Y; Shikata T
    ACS Omega; 2018 Oct; 3(10):13944-13951. PubMed ID: 30411054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites.
    Noda Y; Koizumi S; Masui T; Mashita R; Kishimoto H; Yamaguchi D; Kumada T; Takata SI; Ohishi K; Suzuki JI
    J Appl Crystallogr; 2016 Dec; 49(Pt 6):2036-2045. PubMed ID: 27980510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.