BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28150809)

  • 1. Selective binocular vision loss in two subterranean caviomorph rodents: Spalacopus cyanus and Ctenomys talarum.
    Vega-Zuniga T; Medina FS; Marín G; Letelier JC; Palacios AG; Němec P; Schleich CE; Mpodozis J
    Sci Rep; 2017 Feb; 7():41704. PubMed ID: 28150809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field.
    Collin SP; Northcutt RG
    Brain Behav Evol; 1995; 45(1):34-53. PubMed ID: 7866770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does nocturnality drive binocular vision? Octodontine rodents as a case study.
    Vega-Zuniga T; Medina FS; Fredes F; Zuniga C; Severín D; Palacios AG; Karten HJ; Mpodozis J
    PLoS One; 2013; 8(12):e84199. PubMed ID: 24391911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae).
    Peichl L; Chavez AE; Ocampo A; Mena W; Bozinovic F; Palacios AG
    J Comp Neurol; 2005 Jun; 486(3):197-208. PubMed ID: 15844175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): morphology, topography, and spectral sensitivity.
    Schleich CE; Vielma A; Glösmann M; Palacios AG; Peichl L
    J Comp Neurol; 2010 Oct; 518(19):4001-15. PubMed ID: 20737597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual system of the fossorial mole-lemmings, Ellobius talpinus and Ellobius lutescens.
    Herbin M; Repérant J; Cooper HM
    J Comp Neurol; 1994 Aug; 346(2):253-75. PubMed ID: 7962718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of very early monocular and binocular enucleation on primary visual centers in the tammar wallaby (Macropus eugenii).
    Marotte LR; Flett DL; Mark RF
    J Comp Neurol; 1989 Apr; 282(4):535-54. PubMed ID: 2723151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downstream mediators of Ten-m3 signalling in the developing visual pathway.
    Glendining KA; Liu SC; Nguyen M; Dharmaratne N; Nagarajah R; Iglesias MA; Sawatari A; Leamey CA
    BMC Neurosci; 2017 Dec; 18(1):78. PubMed ID: 29207951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tubular eyes of deep-sea fishes: a comparative study of retinal topography.
    Collin SP; Hoskins RV; Partridge JC
    Brain Behav Evol; 1997; 50(6):335-57. PubMed ID: 9406644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Number, distribution and size of retinal ganglion cells in the jungle crow (Corvus macrorhynchos).
    Rahman ML; Sugita S; Aoyama M; Sugita S
    Anat Sci Int; 2006 Dec; 81(4):253-9. PubMed ID: 17176961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gecko vision--retinal organization, foveae and implications for binocular vision.
    Röll B
    Vision Res; 2001 Jul; 41(16):2043-56. PubMed ID: 11403789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi.
    Cooper HM; Herbin M; Nevo E
    J Comp Neurol; 1993 Feb; 328(3):313-50. PubMed ID: 8440785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex.
    Nemec P; Cveková P; Benada O; Wielkopolska E; Olkowicz S; Turlejski K; Burda H; Bennett NC; Peichl L
    Brain Res Bull; 2008 Mar; 75(2-4):356-64. PubMed ID: 18331898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal development of primary visual projections in the tammar wallaby (Macropus eugenii).
    Wye-Dvorak J
    J Comp Neurol; 1984 Oct; 228(4):491-508. PubMed ID: 6490967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos.
    Coimbra JP; Collin SP; Hart NS
    J Comp Neurol; 2014 Oct; 522(15):3363-85. PubMed ID: 24889497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual fields in Short-toed Eagles, Circaetus gallicus (Accipitridae), and the function of binocularity in birds.
    Martin GR; Katzir G
    Brain Behav Evol; 1999; 53(2):55-66. PubMed ID: 9933782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization.
    Collin SP; Hoskins RV; Partridge JC
    Brain Behav Evol; 1998; 51(6):291-314. PubMed ID: 9623907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of AP-2delta reduces retinal ganglion cell numbers and axonal projections to the superior colliculus.
    Li X; Gaillard F; Monckton EA; Glubrecht DD; Persad AR; Moser M; Sauvé Y; Godbout R
    Mol Brain; 2016 Jun; 9(1):62. PubMed ID: 27259519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of retinogeniculate cells in the tammar wallaby in relation to decussation at the optic chiasm.
    Wimborne BM; Mark RF; Ibbotson MR
    J Comp Neurol; 1999 Mar; 405(1):128-40. PubMed ID: 10022200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision.
    Leamey CA; Merlin S; Lattouf P; Sawatari A; Zhou X; Demel N; Glendining KA; Oohashi T; Sur M; Fässler R
    PLoS Biol; 2007 Sep; 5(9):e241. PubMed ID: 17803360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.