These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing. Li X; Guo S; Su J; Ren X; Fang Z ACS Appl Mater Interfaces; 2020 Jun; 12(25):28474-28483. PubMed ID: 32468820 [TBL] [Abstract][Full Text] [Related]
24. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. Yuan K; Jurado-Sánchez B; Escarpa A J Nanobiotechnology; 2022 Dec; 20(1):537. PubMed ID: 36544151 [TBL] [Abstract][Full Text] [Related]
25. Electrical Tuning of the SERS Enhancement by Precise Defect Density Control. Zhou C; Sun L; Zhang F; Gu C; Zeng S; Jiang T; Shen X; Ang DS; Zhou J ACS Appl Mater Interfaces; 2019 Sep; 11(37):34091-34099. PubMed ID: 31433618 [TBL] [Abstract][Full Text] [Related]
26. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering. Zhu L; Meng Z; Hu S; Zhao T; Zhao B ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application. Yang L; Yang Y; Ma Y; Li S; Wei Y; Huang Z; Long NV Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29156600 [TBL] [Abstract][Full Text] [Related]
28. Mesoporous semiconducting TiO Yang L; Yin D; Shen Y; Yang M; Li X; Han X; Jiang X; Zhao B Phys Chem Chem Phys; 2017 Jul; 19(28):18731-18738. PubMed ID: 28696460 [TBL] [Abstract][Full Text] [Related]
29. Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering. Lan L; Fan X; Zhao C; Gao J; Qu Z; Song W; Yao H; Li M; Qiu T Nanoscale; 2023 Feb; 15(6):2779-2787. PubMed ID: 36661187 [TBL] [Abstract][Full Text] [Related]
30. Semiconductor SERS enhancement enabled by oxygen incorporation. Zheng Z; Cong S; Gong W; Xuan J; Li G; Lu W; Geng F; Zhao Z Nat Commun; 2017 Dec; 8(1):1993. PubMed ID: 29222510 [TBL] [Abstract][Full Text] [Related]
31. Semiconductor-driven "turn-off" surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water. Ji W; Wang Y; Tanabe I; Han X; Zhao B; Ozaki Y Chem Sci; 2015 Jan; 6(1):342-348. PubMed ID: 28694937 [TBL] [Abstract][Full Text] [Related]
32. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications. Wang H; Jiang X; He Y Analyst; 2016 Aug; 141(17):5010-9. PubMed ID: 27414500 [TBL] [Abstract][Full Text] [Related]
33. Alternative to Noble Metal Substrates: Metallic and Plasmonic Ti Li Y; Bai H; Zhai J; Yi W; Li J; Yang H; Xi G Anal Chem; 2019 Apr; 91(7):4496-4503. PubMed ID: 30854853 [TBL] [Abstract][Full Text] [Related]
34. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
35. Plasmon-Induced Charge Transfer-Enhanced Raman Scattering on a Semiconductor: Toward Amplification-Free Quantification of SARS-CoV-2. Feng E; Zheng T; He X; Chen J; Gu Q; He X; Hu F; Li J; Tian Y Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309249. PubMed ID: 37555368 [TBL] [Abstract][Full Text] [Related]
36. Metallo-Supramolecular Helicates as Surface-Enhanced Raman Scattering (SERS) Substrates with High Tailorability. Song B; Zhang Z; Dou W; Zhao X; Niu Y; Wang C; Li C; Nitschke JR; Tian Y; Yang HB; Xu L Angew Chem Int Ed Engl; 2024 Sep; ():e202414089. PubMed ID: 39221861 [TBL] [Abstract][Full Text] [Related]
37. Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities. Zhang M; Wang Y; Ma Y; Wang X; Zhao B; Ruan W Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120288. PubMed ID: 34455383 [TBL] [Abstract][Full Text] [Related]
38. Enhanced Raman scattering on lead iodide film. Zhu L; Ma H; Wang H; Li P; Guo L; Zhao B Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117336. PubMed ID: 31302565 [TBL] [Abstract][Full Text] [Related]
39. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. Lai H; Xu F; Zhang Y; Wang L J Mater Chem B; 2018 Jun; 6(24):4008-4028. PubMed ID: 32255147 [TBL] [Abstract][Full Text] [Related]
40. Spotting the driving forces for SERS of two-dimensional nanomaterials. Jin J; Guo Z; Fan D; Zhao B Mater Horiz; 2023 Apr; 10(4):1087-1104. PubMed ID: 36629521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]