These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28150837)

  • 1. DNA as an environmental sensor: detection and identification of pesticide contaminants in water with fluorescent nucleobases.
    Kwon H; Chan KM; Kool ET
    Org Biomol Chem; 2017 Feb; 15(8):1801-1809. PubMed ID: 28150837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern-Based Detection of Anion Pollutants in Water with DNA Polyfluorophores.
    Kwon H; Jiang W; Kool ET
    Chem Sci; 2015 Apr; 6(4):2575-2583. PubMed ID: 26146537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-polyfluorophore Chemosensors for Environmental Remediation: Vapor-phase Identification of Petroleum Products in Contaminated Soil.
    Jiang W; Wang S; Yuen LH; Kwon H; Ono T; Kool ET
    Chem Sci; 2013 Aug; 4(8):3184-3190. PubMed ID: 23878719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating a diverse range of volatile organic compounds with polyfluorophore sensors built on a DNA scaffold.
    Samain F; Dai N; Kool ET
    Chemistry; 2011 Jan; 17(1):174-83. PubMed ID: 21207614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-evaluation of groundwater monitoring data for glyphosate and bentazone by taking detection limits into account.
    Hansen CT; Ritz C; Gerhard D; Jensen JE; Streibig JC
    Sci Total Environ; 2015 Dec; 536():68-71. PubMed ID: 26196070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selecting analytical target pesticides in monitoring: Sensitivity analysis and scoring.
    Tani K; Matsui Y; Iwao K; Kamata M; Matsushita T
    Water Res; 2012 Mar; 46(3):741-9. PubMed ID: 22154284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale detection of metals with a small set of fluorescent DNA-like chemosensors.
    Yuen LH; Franzini RM; Tan SS; Kool ET
    J Am Chem Soc; 2014 Oct; 136(41):14576-82. PubMed ID: 25255102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of selected organic contaminants in streams associated with agricultural activities and comparison between autosampling and silicone rubber passive sampling.
    Emelogu ES; Pollard P; Robinson CD; Webster L; McKenzie C; Napier F; Steven L; Moffat CF
    Sci Total Environ; 2013 Feb; 445-446():261-72. PubMed ID: 23337603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment.
    Comoretto L; Arfib B; Chiron S
    Sci Total Environ; 2007 Jul; 380(1-3):124-32. PubMed ID: 17324449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of pesticide monitoring strategies in agricultural streams based on the toxic-unit concept--experiences from long-term measurements.
    Bundschuh M; Goedkoop W; Kreuger J
    Sci Total Environ; 2014 Jun; 484():84-91. PubMed ID: 24686148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral pesticides: identification, description, and environmental implications.
    Ulrich EM; Morrison CN; Goldsmith MR; Foreman WT
    Rev Environ Contam Toxicol; 2012; 217():1-74. PubMed ID: 22350557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental fate of fungicides and other current-use pesticides in a central California estuary.
    Smalling KL; Kuivila KM; Orlando JL; Phillips BM; Anderson BS; Siegler K; Hunt JW; Hamilton M
    Mar Pollut Bull; 2013 Aug; 73(1):144-53. PubMed ID: 23790458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient chemosensors for toxic pollutants based on photoluminescent Zn(ii) and Cd(ii) metal-organic networks.
    Rosales-Vázquez LD; Dorazco-González A; Sánchez-Mendieta V
    Dalton Trans; 2021 Apr; 50(13):4470-4485. PubMed ID: 33877166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels.
    Konstantinou IK; Hela DG; Albanis TA
    Environ Pollut; 2006 Jun; 141(3):555-70. PubMed ID: 16226830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Runoff characteristics of particulate pesticides in a river from paddy fields.
    Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y
    Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated approach for assessing influence of agricultural activities on pesticides in a shallow aquifer in south-eastern Norway.
    Kværner J; Eklo OM; Solbakken E; Solberg I; Sorknes S
    Sci Total Environ; 2014 Nov; 499():520-32. PubMed ID: 24996854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent chemosensors for toxic organophosphorus pesticides: a review.
    Obare SO; De C; Guo W; Haywood TL; Samuels TA; Adams CP; Masika NO; Murray DH; Anderson GA; Campbell K; Fletcher K
    Sensors (Basel); 2010; 10(7):7018-43. PubMed ID: 22163587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pesticide levels in surface waters in an agricultural-forestry basin in Southern Chile.
    Palma G; Sánchez A; Olave Y; Encina F; Palma R; Barra R
    Chemosphere; 2004 Nov; 57(8):763-70. PubMed ID: 15488567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosensor technology for pesticides--a review.
    Verma N; Bhardwaj A
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3093-119. PubMed ID: 25595494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.