BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28150888)

  • 1. Loss-of-function mutation of the calcium sensor CBL1 increases aluminum sensitivity in Arabidopsis.
    Ligaba-Osena A; Fei Z; Liu J; Xu Y; Shaff J; Lee SC; Luan S; Kudla J; Kochian L; Piñeros M
    New Phytol; 2017 Apr; 214(2):830-841. PubMed ID: 28150888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis.
    Cheong YH; Pandey GK; Grant JJ; Batistic O; Li L; Kim BG; Lee SC; Kudla J; Luan S
    Plant J; 2007 Oct; 52(2):223-39. PubMed ID: 17922773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana.
    Huang C; Ding S; Zhang H; Du H; An L
    Plant Sci; 2011 Jul; 181(1):57-64. PubMed ID: 21600398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis.
    Liu LL; Ren HM; Chen LQ; Wang Y; Wu WH
    Plant Physiol; 2013 Jan; 161(1):266-77. PubMed ID: 23109687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The calcium sensor CBL1 integrates plant responses to abiotic stresses.
    Albrecht V; Weinl S; Blazevic D; D'Angelo C; Batistic O; Kolukisaoglu U; Bock R; Schulz B; Harter K; Kudla J
    Plant J; 2003 Nov; 36(4):457-70. PubMed ID: 14617077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins.
    Hashimoto K; Eckert C; Anschütz U; Scholz M; Held K; Waadt R; Reyer A; Hippler M; Becker D; Kudla J
    J Biol Chem; 2012 Mar; 287(11):7956-68. PubMed ID: 22253446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel role of the calcium sensor CBL1 in response to phosphate deficiency in Arabidopsis thaliana.
    Gao H; Wang C; Li L; Fu D; Zhang Y; Yang P; Zhang T; Wang C
    J Plant Physiol; 2020 Oct; 253():153266. PubMed ID: 32854072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of the Arabidopsis cbl1 mutant in response to salt stress.
    Shi S; Chen W; Sun W
    Proteomics; 2011 Dec; 11(24):4712-25. PubMed ID: 22002954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress.
    Badia MB; Maurino VG; Pavlovic T; Arias CL; Pagani MA; Andreo CS; Saigo M; Drincovich MF; Gerrard Wheeler MC
    Plant J; 2020 Feb; 101(3):653-665. PubMed ID: 31626366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na(+)/K (+) homeostasis in Populus euphratica.
    Zhang H; Lv F; Han X; Xia X; Yin W
    Plant Cell Rep; 2013 May; 32(5):611-21. PubMed ID: 23423605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum-activated root malate and citrate exudation is independent of NIP1;2-facilitated root-cell-wall aluminum removal in Arabidopsis.
    Wang Y; Cai Y; Cao Y; Liu J
    Plant Signal Behav; 2018 Jan; 13(1):e1422469. PubMed ID: 29293394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis ein2-1 and npr1-1 response to Al stress.
    Zhang Y; He Q; Zhao S; Huang L; Hao L
    Bull Environ Contam Toxicol; 2014 Jul; 93(1):78-83. PubMed ID: 24619362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GhSTOP1, a C2H2 type zinc finger transcription factor is essential for aluminum and proton stress tolerance and lateral root initiation in cotton.
    Kundu A; Das S; Basu S; Kobayashi Y; Kobayashi Y; Koyama H; Ganesan M
    Plant Biol (Stuttg); 2019 Jan; 21(1):35-44. PubMed ID: 30098101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis.
    Kobayashi Y; Hoekenga OA; Itoh H; Nakashima M; Saito S; Shaff JE; Maron LG; Piñeros MA; Kochian LV; Koyama H
    Plant Physiol; 2007 Nov; 145(3):843-52. PubMed ID: 17885092
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Yadav AK; Jha SK; Sanyal SK; Luan S; Pandey GK
    Biochem J; 2018 Aug; 475(16):2621-2636. PubMed ID: 30054434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development.
    Li ZY; Xu ZS; Chen Y; He GY; Yang GX; Chen M; Li LC; Ma YZ
    PLoS One; 2013; 8(2):e56412. PubMed ID: 23437128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.
    Liu J; Magalhaes JV; Shaff J; Kochian LV
    Plant J; 2009 Feb; 57(3):389-99. PubMed ID: 18826429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The calcineurin B-like Ca2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis.
    Mähs A; Steinhorst L; Han JP; Shen LK; Wang Y; Kudla J
    Mol Plant; 2013 Jul; 6(4):1149-62. PubMed ID: 23741064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis.
    Cheong YH; Kim KN; Pandey GK; Gupta R; Grant JJ; Luan S
    Plant Cell; 2003 Aug; 15(8):1833-45. PubMed ID: 12897256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana.
    Kumari M; Taylor GJ; Deyholos MK
    Mol Genet Genomics; 2008 Apr; 279(4):339-57. PubMed ID: 18270741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.