These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28150912)

  • 1. Luminescence, Plasmonic, and Magnetic Properties of Doped Semiconductor Nanocrystals.
    Pradhan N; Das Adhikari S; Nag A; Sarma DD
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7038-7054. PubMed ID: 28150912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals.
    Lounis SD; Runnerstrom EL; Bergerud A; Nordlund D; Milliron DJ
    J Am Chem Soc; 2014 May; 136(19):7110-6. PubMed ID: 24786283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial Dopant Placement for Tuning Plasmonic Properties in Metal Oxide Nanocrystals.
    Crockett BM; Jansons AW; Koskela KM; Johnson DW; Hutchison JE
    ACS Nano; 2017 Aug; 11(8):7719-7728. PubMed ID: 28718619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals.
    Zandi O; Agrawal A; Shearer AB; Reimnitz LC; Dahlman CJ; Staller CM; Milliron DJ
    Nat Mater; 2018 Aug; 17(8):710-717. PubMed ID: 29988146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Sn- and Fe-Codoped In2O3 Colloidal Nanocrystals: Plasmonics and Magnetism.
    Tandon B; Shanker GS; Nag A
    J Phys Chem Lett; 2014 Jul; 5(13):2306-11. PubMed ID: 26279551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions.
    Liu Z; Zhong Y; Shafei I; Borman R; Jeong S; Chen J; Losovyj Y; Gao X; Li N; Du Y; Sarnello E; Li T; Su D; Ma W; Ye X
    Nat Commun; 2019 Mar; 10(1):1394. PubMed ID: 30918244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights of Doping and the Photoluminescence Properties of Mn-Doped Perovskite Nanocrystals.
    Das Adhikari S; Guria AK; Pradhan N
    J Phys Chem Lett; 2019 May; 10(9):2250-2257. PubMed ID: 30990324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemically controlled auger quenching of Mn²+ photoluminescence in doped semiconductor nanocrystals.
    White MA; Weaver AL; Beaulac R; Gamelin DR
    ACS Nano; 2011 May; 5(5):4158-68. PubMed ID: 21452880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals.
    Agrawal A; Cho SH; Zandi O; Ghosh S; Johns RW; Milliron DJ
    Chem Rev; 2018 Mar; 118(6):3121-3207. PubMed ID: 29400955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping.
    Ye X; Fei J; Diroll BT; Paik T; Murray CB
    J Am Chem Soc; 2014 Aug; 136(33):11680-6. PubMed ID: 25066599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.
    Greenberg BL; Ganguly S; Held JT; Kramer NJ; Mkhoyan KA; Aydil ES; Kortshagen UR
    Nano Lett; 2015 Dec; 15(12):8162-9. PubMed ID: 26551232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study.
    Nilius N
    J Phys Condens Matter; 2015 Aug; 27(30):303001. PubMed ID: 26151239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials.
    Liu X; Swihart MT
    Chem Soc Rev; 2014 Jun; 43(11):3908-20. PubMed ID: 24566528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mn
    Liu W; Lin Q; Li H; Wu K; Robel I; Pietryga JM; Klimov VI
    J Am Chem Soc; 2016 Nov; 138(45):14954-14961. PubMed ID: 27756131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals.
    Lounis SD; Runnerstrom EL; Llordés A; Milliron DJ
    J Phys Chem Lett; 2014 May; 5(9):1564-74. PubMed ID: 26270097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanide-doped CaS and SrS luminescent nanocrystals: a single-source precursor approach for doping.
    Zhao Y; Rabouw FT; van Puffelen T; van Walree CA; Gamelin DR; de Mello Donegá C; Meijerink A
    J Am Chem Soc; 2014 Nov; 136(47):16533-43. PubMed ID: 25368972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Interplay of Shape and Crystalline Anisotropies in Plasmonic Semiconductor Nanocrystals.
    Kim J; Agrawal A; Krieg F; Bergerud A; Milliron DJ
    Nano Lett; 2016 Jun; 16(6):3879-84. PubMed ID: 27181287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavily doped semiconductor nanocrystal quantum dots.
    Mocatta D; Cohen G; Schattner J; Millo O; Rabani E; Banin U
    Science; 2011 Apr; 332(6025):77-81. PubMed ID: 21454783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.