These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28151440)

  • 21. Sorption of benzoic acid from aqueous solution by cetyltrimethylammonium bromide modified birnessite.
    Wang NH; Lo SL
    Water Sci Technol; 2012; 65(10):1863-8. PubMed ID: 22546803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorptive removal of dichlorophenoxyacetic acid (2,4-D) using novel nanoparticles based on cationic surfactant-coated titania nanoparticles.
    Le TD; Nguyen DT; Nguyen QL; Duong VD; Doan THY; Nadda AK; Sharma S; Le TS; Pham TD
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):42367-42377. PubMed ID: 36648727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sorptive removal of arsenate using termite mound.
    Fufa F; Alemayehu E; Lennartz B
    J Environ Manage; 2014 Jan; 132():188-96. PubMed ID: 24309232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast.
    Bingol A; Ucun H; Bayhan YK; Karagunduz A; Cakici A; Keskinler B
    Bioresour Technol; 2004 Sep; 94(3):245-9. PubMed ID: 15182830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct removal of aqueous As(III) and As(V) by amorphous titanium dioxide nanotube arrays.
    Wu S; Hu W; Luo X; Deng F; Yu K; Luo S; Yang L; Tu X; Zeng G
    Environ Technol; 2013; 34(13-16):2285-90. PubMed ID: 24350483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of arsenate from aqueous solution by adsorption onto titanium dioxide nanoparticles.
    Jézéquel H; Chu KH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1519-28. PubMed ID: 16835108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenate removal on the iron oxide ion exchanger modified with Neodymium(III) ions.
    Dudek S; Kołodyńska D
    J Environ Manage; 2022 Apr; 307():114551. PubMed ID: 35066202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a cetyltrimethyl ammonium bromide-modified sorbent for removal of perfluorooctane sulphonate from water.
    Li YM; Zhang FS
    Environ Technol; 2014; 35(17-20):2556-68. PubMed ID: 25145211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution.
    Anari-Anaraki M; Nezamzadeh-Ejhieh A
    J Colloid Interface Sci; 2015 Feb; 440():272-81. PubMed ID: 25460715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lead sorption onto acrylamide modified titanium nanocomposite from aqueous media.
    Sharma AK; Lee BK
    J Environ Manage; 2013 Oct; 128():787-97. PubMed ID: 23860381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions.
    Sahiner N; Demirci S; Sahiner M; Yilmaz S; Al-Lohedan H
    J Environ Manage; 2015 Apr; 152():66-74. PubMed ID: 25617870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide.
    Li D; Ding Y; Li L; Chang Z; Rao Z; Lu L
    Environ Technol; 2015; 36(9-12):1084-90. PubMed ID: 25299348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime.
    Nezamzadeh-Ejhieh A; Kabiri-Samani M
    J Hazard Mater; 2013 Sep; 260():339-49. PubMed ID: 23792926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cetyl trimethyl ammonium bromide modified magnetic biochar from pine nut shells for efficient removal of acid chrome blue K.
    Wang H; Wang S; Gao Y
    Bioresour Technol; 2020 Sep; 312():123564. PubMed ID: 32506041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface rearrangement of nanoscale zerovalent iron: the role of pH and its implications in the kinetics of arsenate sorption.
    Baltazar SE; García A; Romero AH; Rubio MA; Arancibia-Miranda N; Altbir D
    Environ Technol; 2014; 35(17-20):2365-72. PubMed ID: 25145190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite.
    Wang L; Wang A
    J Hazard Mater; 2008 Dec; 160(1):173-80. PubMed ID: 18400385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).
    Jiménez-Cedillo MJ; Olguín MT; Fall C; Colin-Cruz A
    J Environ Manage; 2013 Mar; 117():242-52. PubMed ID: 23376307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient sorption of Cu(2+) by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads.
    Dragan ES; Apopei Loghin DF; Cocarta AI
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16577-92. PubMed ID: 25191990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles.
    Belessi V; Romanos G; Boukos N; Lambropoulou D; Trapalis C
    J Hazard Mater; 2009 Oct; 170(2-3):836-44. PubMed ID: 19540670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles.
    Liang Q; Zhao D
    J Hazard Mater; 2014 Apr; 271():16-23. PubMed ID: 24584068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.