These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28151723)

  • 1. Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial.
    Al Mohtar A; Kazan M; Taliercio T; Cerutti L; Blaize S; Bruyant A
    Nanotechnology; 2017 Mar; 28(12):125701. PubMed ID: 28151723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix.
    Taliercio T; Guilengui VN; Cerutti L; Rodriguez JB; Barho F; Rodrigo MJ; Gonzalez-Posada F; Tournié E; Niehle M; Trampert A
    Opt Express; 2015 Nov; 23(23):29423-33. PubMed ID: 26698426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures.
    Milla MJ; Barho F; González-Posada F; Cerutti L; Bomers M; Rodriguez JB; Tournié E; Taliercio T
    Nanotechnology; 2016 Oct; 27(42):425201. PubMed ID: 27608135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas.
    Milla MJ; Barho F; González-Posada F; Cerutti L; Charlot B; Bomers M; Neubrech F; Tournie E; Taliercio T
    Opt Express; 2017 Oct; 25(22):26651-26661. PubMed ID: 29092159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brewster "mode" in highly doped semiconductor layers: an all-optical technique to monitor doping concentration.
    Taliercio T; Guilengui VN; Cerutti L; Tournié E; Greffet JJ
    Opt Express; 2014 Oct; 22(20):24294-303. PubMed ID: 25322004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range.
    Barho FB; Gonzalez-Posada F; Milla-Rodrigo MJ; Bomers M; Cerutti L; Taliercio T
    Opt Express; 2016 Jul; 24(14):16175-90. PubMed ID: 27410884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband high reflectivity in subwavelength-grating slab waveguides.
    Tian H; Cui X; Du Y; Tan P; Shi G; Zhou Z
    Opt Express; 2015 Oct; 23(21):27174-9. PubMed ID: 26480378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadrupole mode plasmon resonance enabled subwavelength metal-dielectric grating optical reflection filters.
    Wang Z; Zhang R; Guo J
    Opt Express; 2018 Jan; 26(1):496-504. PubMed ID: 29328326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarizing color filter based on a subwavelength metal-dielectric grating.
    Ye Y; Zhou Y; Zhang H; Chen L
    Appl Opt; 2011 Apr; 50(10):1356-63. PubMed ID: 21460901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Dielectric Surface-Enhanced Infrared Absorption-Based Gas Sensor Using Guided Resonance.
    Chang Y; Hasan D; Dong B; Wei J; Ma Y; Zhou G; Ang KW; Lee C
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38272-38279. PubMed ID: 30360088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-infrared designer metals.
    Law S; Adams DC; Taylor AM; Wasserman D
    Opt Express; 2012 May; 20(11):12155-65. PubMed ID: 22714202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings.
    Cui X; Tian H; Du Y; Shi G; Zhou Z
    Sci Rep; 2016 Nov; 6():36066. PubMed ID: 27824049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.
    Petefish JW; Hillier AC
    Anal Chem; 2015 Nov; 87(21):10862-70. PubMed ID: 26458177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectral filter based on all-semiconductor guided-mode resonance.
    Maës C; Vincent G; Flores FG; Cerutti L; Haïdar R; Taliercio T
    Opt Lett; 2019 Jun; 44(12):3090-3093. PubMed ID: 31199388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadening the absorption bandwidth based on heavily doped semiconductor nanostructures.
    Goncharenko AV; Fitio V; Silkin V
    Opt Express; 2022 Sep; 30(20):36622-36631. PubMed ID: 36258586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magneto-optical Kramers-Kronig analysis.
    Levallois J; Nedoliuk IO; Crassee I; Kuzmenko AB
    Rev Sci Instrum; 2015 Mar; 86(3):033906. PubMed ID: 25832244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane.
    Sang T; Wang L; Ji S; Ji Y; Chen H; Wang Z
    J Opt Soc Am A Opt Image Sci Vis; 2009 Mar; 26(3):559-65. PubMed ID: 19252654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing detectivity of polarization modulation infrared reflection-absorption spectroscopy for the study of ultrathin films deposited on various substrates.
    Saccani J; Buffeteau T; Desbat B; Blaudez D
    Appl Spectrosc; 2003 Oct; 57(10):1260-5. PubMed ID: 14639755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy.
    Ohta N; Nomura K; Yagi I
    Langmuir; 2010 Dec; 26(23):18097-104. PubMed ID: 21043469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.