These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 28152488)
1. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor. Yu X; Yu Z; Li F; Xu Y; He X; Xu L; Shi W; Zhang G; Yan H Biosens Bioelectron; 2017 May; 91():817-823. PubMed ID: 28152488 [TBL] [Abstract][Full Text] [Related]
2. A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility. Yang W; Lai RY Chem Commun (Camb); 2012 Sep; 48(69):8703-5. PubMed ID: 22825042 [TBL] [Abstract][Full Text] [Related]
3. A "signal on" protection-displacement-hybridization-based electrochemical hepatitis B virus gene sequence sensor with high sensitivity and peculiar adjustable specificity. Li F; Xu Y; Yu X; Yu Z; He X; Ji H; Dong J; Song Y; Yan H; Zhang G Biosens Bioelectron; 2016 Aug; 82():212-6. PubMed ID: 27085953 [TBL] [Abstract][Full Text] [Related]
4. An electrochemical DNA sensor without electrode pre-modification. Hong N; Cheng L; Wei B; Chen C; He LL; Kong D; Ceng J; Cui HF; Fan H Biosens Bioelectron; 2017 May; 91():110-114. PubMed ID: 28011414 [TBL] [Abstract][Full Text] [Related]
5. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor. Lubin AA; Hunt BV; White RJ; Plaxco KW Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066 [TBL] [Abstract][Full Text] [Related]
6. Two kanamycin electrochemical aptamer-based sensors using different signal transduction mechanisms: A comparison of electrochemical behavior and sensing performance. Han X; Yu Z; Li F; Shi W; Fu C; Yan H; Zhang G Bioelectrochemistry; 2019 Oct; 129():270-277. PubMed ID: 31254804 [TBL] [Abstract][Full Text] [Related]
7. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. Pang J; Zhang Z; Jin H Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458 [TBL] [Abstract][Full Text] [Related]
8. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor. Gao F; Du L; Zhang Y; Tang D; Du Y Anal Chim Acta; 2015 Jul; 883():67-73. PubMed ID: 26088778 [TBL] [Abstract][Full Text] [Related]
9. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor. Wu Y; Lai RY Anal Chem; 2014 Sep; 86(17):8888-95. PubMed ID: 25110351 [TBL] [Abstract][Full Text] [Related]
10. Label-free electrochemical DNA sensing with a one-target-multitriggered hybridization chain reaction strategy. Zhu Z; Lei J; Liu L; Ju H Analyst; 2013 Oct; 138(20):5995-6000. PubMed ID: 23951569 [TBL] [Abstract][Full Text] [Related]
11. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors. Yu ZG; Zaitouna AJ; Lai RY Anal Chim Acta; 2014 Feb; 812():176-83. PubMed ID: 24491779 [TBL] [Abstract][Full Text] [Related]
12. Effect of signaling probe conformation on sensor performance of a displacement-based electrochemical DNA sensor. Yu ZG; Lai RY Anal Chem; 2013 Mar; 85(6):3340-6. PubMed ID: 23413882 [TBL] [Abstract][Full Text] [Related]
13. Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Kjällman TH; Peng H; Soeller C; Travas-Sejdic J Anal Chem; 2008 Dec; 80(24):9460-6. PubMed ID: 19006336 [TBL] [Abstract][Full Text] [Related]
14. Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved sensitivity. Yu Z; Han X; Li F; Tan X; Shi W; Fu C; Yan H; Zhang G Anal Bioanal Chem; 2020 Apr; 412(11):2391-2397. PubMed ID: 32076786 [TBL] [Abstract][Full Text] [Related]
15. A CdTe nanoparticle-modified hairpin probe for direct and sensitive electrochemical detection of DNA. Kjällman TH; Peng H; Soeller C; Travas-Sejdic J Analyst; 2010 Mar; 135(3):488-94. PubMed ID: 20174700 [TBL] [Abstract][Full Text] [Related]
16. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor. Ahangar LE; Mehrgardi MA Biosens Bioelectron; 2012; 38(1):252-7. PubMed ID: 22727625 [TBL] [Abstract][Full Text] [Related]
17. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Zhang S; Zhong H; Ding C Anal Chem; 2008 Oct; 80(19):7206-12. PubMed ID: 18759495 [TBL] [Abstract][Full Text] [Related]
18. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic amplification. Feng K; Zhao J; Wu ZS; Jiang J; Shen G; Yu R Biosens Bioelectron; 2011 Mar; 26(7):3187-91. PubMed ID: 21239161 [TBL] [Abstract][Full Text] [Related]
19. Toehold Mediated One-Step Conformation-Switchable "Signal-On" Electrochemical DNA Sensing Enhanced with Homogeneous Enzymatic Amplification. Wang S; Yang F; Jin D; Dai Q; Tu J; Liu Y; Ning Y; Zhang GJ Anal Chem; 2017 May; 89(10):5349-5356. PubMed ID: 28452219 [TBL] [Abstract][Full Text] [Related]
20. Development of a "signal-on" electrochemical DNA sensor with an oligo-thymine spacer for point mutation detection. Wu Y; Lai RY Chem Commun (Camb); 2013 Apr; 49(33):3422-4. PubMed ID: 23503676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]