BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28153039)

  • 1. Metabolomics variable selection and classification in the presence of observations below the detection limit using an extension of ERp.
    van Reenen M; Westerhuis JA; Reinecke CJ; Venter JH
    BMC Bioinformatics; 2017 Feb; 18(1):83. PubMed ID: 28153039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable selection for binary classification using error rate p-values applied to metabolomics data.
    van Reenen M; Reinecke CJ; Westerhuis JA; Venter JH
    BMC Bioinformatics; 2016 Jan; 17():33. PubMed ID: 26763892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample size and statistical power assessing the effect of interventions in the context of mixture distributions with detection limits.
    Chu H; Nie L; Cole SR
    Stat Med; 2006 Aug; 25(15):2647-57. PubMed ID: 16456897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform.
    Huan T; Li L
    Anal Chem; 2015 Jan; 87(2):1306-13. PubMed ID: 25496403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry-based metabolomics for tuberculosis meningitis.
    Zhang P; Zhang W; Lang Y; Qu Y; Chu F; Chen J; Cui L
    Clin Chim Acta; 2018 Aug; 483():57-63. PubMed ID: 29678632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simultaneous Metabolic Profiling and Quantitative Multimetabolite Metabolomic Method for Human Plasma Using Gas-Chromatography Tandem Mass Spectrometry.
    Savolainen OI; Sandberg AS; Ross AB
    J Proteome Res; 2016 Jan; 15(1):259-65. PubMed ID: 26615962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypothesis tests for point-mass mixture data with application to 'omics data with many zero values.
    Taylor S; Pollard K
    Stat Appl Genet Mol Biol; 2009; 8():Article 8. PubMed ID: 19222391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of Absence: Bayesian Way to Reveal True Zeros Among Occupational Exposures.
    Lavoue J; Burstyn I
    Ann Work Expo Health; 2021 Jan; 65(1):84-95. PubMed ID: 32914163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies.
    Ni Y; Su M; Qiu Y; Jia W; Du X
    Anal Chem; 2016 Sep; 88(17):8802-11. PubMed ID: 27461032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A note on comparing exposure data to a regulatory limit in the presence of unexposed and a limit of detection.
    Chu H; Nie L
    Biom J; 2005 Dec; 47(6):880-7. PubMed ID: 16450859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data.
    Reisetter AC; Muehlbauer MJ; Bain JR; Nodzenski M; Stevens RD; Ilkayeva O; Metzger BE; Newgard CB; Lowe WL; Scholtens DM
    BMC Bioinformatics; 2017 Feb; 18(1):84. PubMed ID: 28153035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metabolomics approach to characterise and identify various Mycobacterium species.
    Olivier I; Loots du T
    J Microbiol Methods; 2012 Mar; 88(3):419-26. PubMed ID: 22301369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general approach for sample size and statistical power calculations assessing of interventions using a mixture model in the presence of detection limits.
    Nie L; Chu H; Cole SR
    Contemp Clin Trials; 2006 Oct; 27(5):483-91. PubMed ID: 16769254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New figures of merit for comprehensive functional genomics data: the metabolomics case.
    Van Batenburg MF; Coulier L; van Eeuwijk F; Smilde AK; Westerhuis JA
    Anal Chem; 2011 May; 83(9):3267-74. PubMed ID: 21391558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the Dynamic Range in Metabolomics Experiments by Automatic Correction of Peaks Exceeding the Detection Limit.
    Lisec J; Hoffmann F; Schmitt C; Jaeger C
    Anal Chem; 2016 Aug; 88(15):7487-92. PubMed ID: 27377477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry.
    Hušek P; Švagera Z; Hanzlíková D; Řimnáčová L; Zahradníčková H; Opekarová I; Šimek P
    J Chromatogr A; 2016 Apr; 1443():211-32. PubMed ID: 27012787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of amino acids and acylcarnitines combined with untargeted metabolomics using ultra-high performance liquid chromatography and quadrupole time-of-flight mass spectrometry.
    Roy C; Tremblay PY; Bienvenu JF; Ayotte P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1027():40-9. PubMed ID: 27240302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive and selective analysis of widely targeted metabolomics using gas chromatography/triple-quadrupole mass spectrometry.
    Tsugawa H; Tsujimoto Y; Sugitate K; Sakui N; Nishiumi S; Bamba T; Fukusaki E
    J Biosci Bioeng; 2014 Jan; 117(1):122-8. PubMed ID: 23867096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urinary metabolomics (GC-MS) reveals that low and high birth weight infants share elevated inositol concentrations at birth.
    Barberini L; Noto A; Fattuoni C; Grapov D; Casanova A; Fenu G; Gaviano M; Carboni R; Ottonello G; Crisafulli M; Fanos V; Dessì A
    J Matern Fetal Neonatal Med; 2014 Oct; 27 Suppl 2():20-6. PubMed ID: 25284173
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.