BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28153088)

  • 1. Specific and Efficient Regression of Cancers Harboring KRAS Mutation by Targeted RNA Replacement.
    Kim SJ; Kim JH; Yang B; Jeong JS; Lee SW
    Mol Ther; 2017 Feb; 25(2):356-367. PubMed ID: 28153088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antitumor effects of systemically delivered adenovirus harboring trans-splicing ribozyme in intrahepatic colon cancer mouse model.
    Jeong JS; Lee SW; Hong SH; Lee YJ; Jung HI; Cho KS; Seo HH; Lee SJ; Park S; Song MS; Kim CM; Kim IH
    Clin Cancer Res; 2008 Jan; 14(1):281-90. PubMed ID: 18172280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of tissue-specific promoter-driven tumor-targeting trans-splicing ribozyme system as a multifunctional cancer gene therapy device in vivo.
    Song MS; Jeong JS; Ban G; Lee JH; Won YS; Cho KS; Kim IH; Lee SW
    Cancer Gene Ther; 2009 Feb; 16(2):113-25. PubMed ID: 18758435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Regression of Hepatocellular Carcinoma by Cancer-Specific RNA Replacement through MicroRNA Regulation.
    Kim J; Won R; Ban G; Ju MH; Cho KS; Young Han S; Jeong JS; Lee SW
    Sci Rep; 2015 Jul; 5():12315. PubMed ID: 26189916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression responses in vivo by human telomerase reverse transcriptase (hTERT)-targeting trans-splicing ribozyme.
    Song MS; Jeong JS; Cho KS; Lee SW
    Exp Mol Med; 2007 Dec; 39(6):722-32. PubMed ID: 18160843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo reprogramming of hTERT by trans-splicing ribozyme to target tumor cells.
    Hong SH; Jeong JS; Lee YJ; Jung HI; Cho KS; Kim CM; Kwon BS; Sullenger BA; Lee SW; Kim IH
    Mol Ther; 2008 Jan; 16(1):74-80. PubMed ID: 17700543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribozyme-mediated induction of apoptosis in human cancer cells by targeted repair of mutant p53 RNA.
    Shin KS; Sullenger BA; Lee SW
    Mol Ther; 2004 Aug; 10(2):365-72. PubMed ID: 15294183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective and efficient retardation of cancers expressing cytoskeleton-associated protein 2 by targeted RNA replacement.
    Ban G; Jeong JS; Kim A; Kim SJ; Han SY; Kim IH; Lee SW
    Int J Cancer; 2011 Aug; 129(4):1018-29. PubMed ID: 21328343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of tumor-targeting trans-splicing ribozyme for cancer treatment.
    Lee SW; Jeong JS
    Methods Mol Biol; 2014; 1103():83-95. PubMed ID: 24318888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific regression of human cancer cells by ribozyme-mediated targeted replacement of tumor-specific transcript.
    Kwon BS; Jung HS; Song MS; Cho KS; Kim SC; Kimm K; Jeong JS; Kim IH; Lee SW
    Mol Ther; 2005 Nov; 12(5):824-34. PubMed ID: 16040278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective regression of cancer cells expressing a splicing variant of AIMP2 through targeted RNA replacement by trans-splicing ribozyme.
    Won YS; Lee SW
    J Biotechnol; 2012 Mar; 158(1-2):44-9. PubMed ID: 22285955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted anticancer effect through microRNA-181a regulated tumor-specific hTERT replacement.
    Won YS; Jeong JS; Kim SJ; Ju MH; Lee SW
    Cancer Lett; 2015 Jan; 356(2 Pt B):918-28. PubMed ID: 25444904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer-selective induction of cytotoxicity by tissue-specific expression of targeted trans-splicing ribozyme.
    Song MS; Lee SW
    FEBS Lett; 2006 Sep; 580(21):5033-43. PubMed ID: 16949075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer-specific induction of adenoviral E1A expression by group I intron-based trans-splicing ribozyme.
    Won YS; Lee SW
    J Microbiol Biotechnol; 2012 Mar; 22(3):431-5. PubMed ID: 22450801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective targeting of the oncogenic
    Gao Q; Ouyang W; Kang B; Han X; Xiong Y; Ding R; Li Y; Wang F; Huang L; Chen L; Wang D; Dong X; Zhang Z; Li Y; Ze B; Hou Y; Yang H; Ma Y; Gu Y; Chao CC
    Theranostics; 2020; 10(11):5137-5153. PubMed ID: 32308773
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthetic Lethality of a Novel Small Molecule Against Mutant KRAS-Expressing Cancer Cells Involves AKT-Dependent ROS Production.
    Iskandar K; Rezlan M; Yadav SK; Foo CH; Sethi G; Qiang Y; Bellot GL; Pervaiz S
    Antioxid Redox Signal; 2016 May; 24(14):781-94. PubMed ID: 26714745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction of a trans-splicing ribozyme for restoring EGFP truncation mutation].
    Li B; Xiong YQ; Tu HB; Liu QC; Zou DT; Zhou WQ; Chen YY
    Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):748-53. PubMed ID: 16285516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular efficacy of tumor-targeting group I intron-based trans-splicing ribozyme.
    Kwon BS; Jeong JS; Won YS; Lee CH; Yoon KS; Hyung Jung M; Kim IH; Lee SW
    J Gene Med; 2011 Feb; 13(2):89-100. PubMed ID: 21322101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher metastatic efficiency of KRas G12V than KRas G13D in a colorectal cancer model.
    Alamo P; Gallardo A; Di Nicolantonio F; Pavón MA; Casanova I; Trias M; Mangues MA; Lopez-Pousa A; Villaverde A; Vázquez E; Bardelli A; Céspedes MV; Mangues R
    FASEB J; 2015 Feb; 29(2):464-76. PubMed ID: 25359494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A recombinant chimeric protein specifically induces mutant KRAS degradation and potently inhibits pancreatic tumor growth.
    Pan T; Zhang Y; Zhou N; He X; Chen C; Liang L; Duan X; Lin Y; Wu K; Zhang H
    Oncotarget; 2016 Jul; 7(28):44299-44309. PubMed ID: 27322423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.