BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28153269)

  • 1. Silver nanoprisms-based Tb(III) fluorescence sensor for highly selective detection of dopamine.
    Shen J; Sun C; Wu X
    Talanta; 2017 Apr; 165():369-376. PubMed ID: 28153269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver nanoparticles-enhanced rare earth co-luminescence effect of Tb(III)-Y(III)-dopamine system.
    Li H; Wu X
    Talanta; 2015 Jun; 138():203-208. PubMed ID: 25863392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Tb(III) fluorescence on gelatin-coated silver nanoparticles in dopamine detection.
    Sun J; Feng A; Wu X; Che X; Zhou W
    Talanta; 2021 Aug; 231():122334. PubMed ID: 33965015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly selective and sensitive fluorescent nanosensor for dopamine based on formate bridged Tb(iii) complex and silver nanoparticles.
    Li H; Shen J; Cui R; Sun C; Zhao Y; Wu X; Li N; Tang B
    Analyst; 2017 Nov; 142(22):4240-4246. PubMed ID: 28816315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver nanoflowers-enhanced Tb(III)/La(III) co-luminescence for the sensitive detection of dopamine.
    Sun C; Shen J; Cui R; Yuan F; Zhang H; Wu X
    Anal Bioanal Chem; 2019 Mar; 411(7):1375-1381. PubMed ID: 30645663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the tryptophan-terbium FRET pair coupled to silver nanoprisms for biosensing applications.
    di Gennaro AK; Gurevich L; Skovsen E; Overgaard MT; Fojan P
    Phys Chem Chem Phys; 2013 Jun; 15(22):8838-44. PubMed ID: 23646357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A specific fluorescent nanoprobe for dopamine based on the synergistic action of citrate and gold nanoparticles on Tb(III) luminescence.
    Sun C; Yuan F; Li H; Wu X
    Mikrochim Acta; 2018 Jun; 185(7):317. PubMed ID: 29876884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.
    Lu Q; Chen X; Liu D; Wu C; Liu M; Li H; Zhang Y; Yao S
    Talanta; 2018 May; 182():428-432. PubMed ID: 29501174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Sensing Platform for the Colorimetric Determination of Silver Nanoprisms and Its Application for Hydrogen Peroxide and Glucose Detections Using a Mobile Device Camera.
    Lertvachirapaiboon C; Maruyama T; Baba A; Ekgasit S; Shinbo K; Kato K
    Anal Sci; 2019 Mar; 35(3):271-276. PubMed ID: 30369555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox.
    Abolhasani J; Naderali R; Hassanzadeh J
    Anal Sci; 2016; 32(4):381-6. PubMed ID: 27063708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Sensitive, Simple and Direct Determination of Pantoprazole Based on a "Turn off-on" Fluorescence Nanosensor by Using Terbium-1,10-phenanthroline-silver Nanoparticles.
    Shaghaghi M; Rashtbari S; Abdollahi A; Dehghan G; Jouyban A
    Anal Sci; 2020; 36(11):1345-1349. PubMed ID: 33177314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Nanosilver sensitized fluorescence and second-order scattering of Tb (III)-norfloxacin and its application].
    Yang ZJ; Zhao HC; Ding F; Li AY; Wang XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Dec; 27(12):2534-7. PubMed ID: 18330303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode.
    Sanghavi BJ; Mobin SM; Mathur P; Lahiri GK; Srivastava AK
    Biosens Bioelectron; 2013 Jan; 39(1):124-32. PubMed ID: 22841445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A terbium-sensitized spectrofluorimetric method for determination of catecholamines in a serum sample with micelle medium.
    Kamruzzaman M; Alam AM; Lee SH; Kim YH; Kim SH
    Luminescence; 2012; 27(1):84-90. PubMed ID: 21692167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe³⁺ ions.
    Makwana BA; Vyas DJ; Bhatt KD; Jain VK; Agrawal YK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():73-80. PubMed ID: 25004898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized Acupuncture Needle as Surface-Enhanced Resonance Raman Spectroscopy Sensor for Rapid and Sensitive Detection of Dopamine in Serum and Cerebrospinal Fluid.
    Li P; Zhou B; Cao X; Tang X; Yang L; Hu L; Liu J
    Chemistry; 2017 Oct; 23(57):14278-14285. PubMed ID: 28722332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing.
    Fan M; Thompson M; Andrade ML; Brolo AG
    Anal Chem; 2010 Aug; 82(15):6350-2. PubMed ID: 20597465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-enzymatic sensing of dopamine by localized surface plasmon resonance using carbon dots-functionalized gold nanoparticles.
    Amiri M; Dadfarnia S; Haji Shabani AM; Sadjadi S
    J Pharm Biomed Anal; 2019 Aug; 172():223-229. PubMed ID: 31060035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive and selective detection of dopamine using cobalt-phthalocyanine nanopillar-based surface acoustic wave sensor.
    Fourati N; Seydou M; Zerrouki C; Singh A; Samanta S; Maurel F; Aswal DK; Chehimi M
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22378-86. PubMed ID: 25412427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel ultrasensitive and non-enzymatic "turn-on-off" fluorescence nanosensor for direct determination of glucose in the serum: As an alternative approach to the other optical and electrochemical methods.
    Dehghan G; Shaghaghi M; Alizadeh P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():459-468. PubMed ID: 30807944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.