These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28153295)

  • 1. Pesticide residues in propolis from Spain and Chile. An approach using near infrared spectroscopy.
    González-Martín MI; Revilla I; Vivar-Quintana AM; Betances Salcedo EV
    Talanta; 2017 Apr; 165():533-539. PubMed ID: 28153295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy.
    González-Martín MI; Escuredo O; Revilla I; Vivar-Quintana AM; Coello MC; Riocerezo CP; Moncada GW
    Sensors (Basel); 2015 Nov; 15(11):27854-68. PubMed ID: 26540058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprofiling for the quality control of Egyptian propolis using an integrated NIR-HPTLC-image analysis strategy.
    Shawky E; Ibrahim RS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Sep; 1095():75-86. PubMed ID: 30055379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy.
    Betances-Salcedo E; Revilla I; Vivar-Quintana AM; González-Martín MI
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28718789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Untargeted detection and quantitative analysis of poplar balata (PB) in Chinese propolis by FT-NIR spectroscopy and chemometrics.
    Xu L; Yan SM; Cai CB; Yu XP
    Food Chem; 2013 Dec; 141(4):4132-7. PubMed ID: 23993596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Determination of a chlorinated pesticides residue in propolis extract].
    Wojciech P; Zommer-Urbańska S
    Acta Pol Pharm; 1992; 49(5-6):19-21. PubMed ID: 16092194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near infrared spectroscopy for prediction of antioxidant compounds in the honey.
    Escuredo O; Seijo MC; Salvador J; González-Martín MI
    Food Chem; 2013 Dec; 141(4):3409-14. PubMed ID: 23993500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of pesticide residual levels in strawberry (Fragaria) by near-infrared spectroscopy.
    Yazici A; Tiryaki GY; Ayvaz H
    J Sci Food Agric; 2020 Mar; 100(5):1980-1989. PubMed ID: 31849062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application of near-infrared spectroscopy to detection of pesticide phoxim residues].
    Shen F; Yan ZK; Ye ZZ; Ying YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2421-4. PubMed ID: 19950643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of grass silage from Northwestern Spain by near-infrared reflectance spectroscopy.
    Villamarín B; Fernández E; Mendéz J
    J AOAC Int; 2002; 85(3):541-5. PubMed ID: 12083244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy.
    Jamshidi B; Mohajerani E; Jamshidi J; Minaei S; Sharifi A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(6):857-63. PubMed ID: 25789964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of alpaca fibre quality by near-infrared reflectance spectroscopy.
    Canaza-Cayo AW; Alomar D; Quispe E
    Animal; 2013 Jul; 7(7):1219-25. PubMed ID: 23535002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of near-infrared spectroscopy for determining the total arsenic content in prostrate amaranth.
    Font R; Del Río M; Vélez D; Montoro R; De Haro A
    Sci Total Environ; 2004 Jul; 327(1-3):93-104. PubMed ID: 15172574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy.
    De Marchi M; Riovanto R; Penasa M; Cassandro M
    Meat Sci; 2012 Mar; 90(3):653-7. PubMed ID: 22082651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Different Models for Non-Destructive Detection of Tomato Pesticide Residues Based on Near-Infrared Spectroscopy.
    Nazarloo AS; Sharabiani VR; Gilandeh YA; Taghinezhad E; Szymanek M
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in cheese.
    González-Martín I; González-Pérez C; Hernández-Hierro JM; González-Cabrera JM
    Talanta; 2008 Apr; 75(2):351-5. PubMed ID: 18371890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of convolutional neural network for non-destructive detection of imidacloprid and acetamiprid residues in chili pepper (Capsicum frutescens L.) based on visible near-infrared spectroscopy.
    Ong P; Yeh CW; Tsai IL; Lee WJ; Wang YJ; Chuang YK
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123214. PubMed ID: 37531681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of near infrared spectroscopy for the analysis of mycotoxins applied to naturally contaminated red paprika found in the Spanish market.
    Hernández-Hierro JM; García-Villanova RJ; González-Martín I
    Anal Chim Acta; 2008 Aug; 622(1-2):189-94. PubMed ID: 18602552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of humic and fulvic acids in estuarine sediments by near-infrared spectrometry.
    Moros J; Herbello-Hermelo P; Moreda-Piñeiro A; Bermejo-Barrera P; Garrigues S; de la Guardia M
    Anal Bioanal Chem; 2008 Oct; 392(3):541-9. PubMed ID: 18677621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near infrared spectroscopy for high-throughput characterization of Shea tree (Vitellaria paradoxa) nut fat profiles.
    Davrieux F; Allal F; Piombo G; Kelly B; Okulo JB; Thiam M; Diallo OB; Bouvet JM
    J Agric Food Chem; 2010 Jul; 58(13):7811-9. PubMed ID: 20518501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.