These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 28153495)
1. Efficient internalization of TAT peptide in zwitterionic DOPC phospholipid membrane revealed by neutron diffraction. Chen X; Liu S; Deme B; Cristiglio V; Marquardt D; Weller R; Rao P; Wang Y; Bradshaw J Biochim Biophys Acta Biomembr; 2017 May; 1859(5):910-916. PubMed ID: 28153495 [TBL] [Abstract][Full Text] [Related]
2. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction. Chen X; Sa'adedin F; Deme B; Rao P; Bradshaw J Biochim Biophys Acta; 2013 Aug; 1828(8):1982-8. PubMed ID: 23643891 [TBL] [Abstract][Full Text] [Related]
3. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distributions of double bonds and water. Wiener MC; King GI; White SH Biophys J; 1991 Sep; 60(3):568-76. PubMed ID: 1932548 [TBL] [Abstract][Full Text] [Related]
4. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
6. Small-angle neutron scattering study of the lipid bilayer thickness in unilamellar dioleoylphosphatidylcholine vesicles prepared by the cholate dilution method: n-decane effect. Uhríková D; Kucerka N; Islamov A; Kuklin A; Gordeliy V; Balgavý P Biochim Biophys Acta; 2003 Apr; 1611(1-2):31-4. PubMed ID: 12659942 [TBL] [Abstract][Full Text] [Related]
7. Interaction of long-chain n-alcohols with fluid DOPC bilayers: a neutron diffraction study. Petrenko VI; Klacsova M; Beskrovnyy AI; Uhrikova D; Balgavy P Gen Physiol Biophys; 2010 Dec; 29(4):355-61. PubMed ID: 21156998 [TBL] [Abstract][Full Text] [Related]
8. Interaction of substance P with phospholipid bilayers: A neutron diffraction study. Bradshaw JP; Davies SM; Hauss T Biophys J; 1998 Aug; 75(2):889-95. PubMed ID: 9675189 [TBL] [Abstract][Full Text] [Related]
9. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Yesylevskyy S; Marrink SJ; Mark AE Biophys J; 2009 Jul; 97(1):40-9. PubMed ID: 19580742 [TBL] [Abstract][Full Text] [Related]
10. HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations. Akabori K; Huang K; Treece BW; Jablin MS; Maranville B; Woll A; Nagle JF; Garcia AE; Tristram-Nagle S Biochim Biophys Acta; 2014 Dec; 1838(12):3078-87. PubMed ID: 25148702 [TBL] [Abstract][Full Text] [Related]
11. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration. Hristova K; White SH Biophys J; 1998 May; 74(5):2419-33. PubMed ID: 9591668 [TBL] [Abstract][Full Text] [Related]
12. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers. Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584 [TBL] [Abstract][Full Text] [Related]
13. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Wiener MC; White SH Biophys J; 1992 Feb; 61(2):434-47. PubMed ID: 1547331 [TBL] [Abstract][Full Text] [Related]
14. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations. Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids. Hu Y; Patel S Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187 [TBL] [Abstract][Full Text] [Related]
16. Effect of cholesterol on the bilayer thickness in unilamellar extruded DLPC and DOPC liposomes: SANS contrast variation study. Gallová J; Uhríková D; Islamov A; Kuklin A; Balgavý P Gen Physiol Biophys; 2004 Mar; 23(1):113-28. PubMed ID: 15270132 [TBL] [Abstract][Full Text] [Related]
17. Neutron reflectivity studies of the interaction of cubic-phase nanoparticles with phospholipid bilayers of different coverage. Vandoolaeghe P; Rennie AR; Campbell RA; Nylander T Langmuir; 2009 Apr; 25(7):4009-20. PubMed ID: 19714826 [TBL] [Abstract][Full Text] [Related]
18. Membrane binding and translocation of cell-penetrating peptides. Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618 [TBL] [Abstract][Full Text] [Related]
19. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. Pan J; Cheng X; Sharp M; Ho CS; Khadka N; Katsaras J Soft Matter; 2015 Jan; 11(1):130-8. PubMed ID: 25369786 [TBL] [Abstract][Full Text] [Related]
20. The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes. Afonin S; Frey A; Bayerl S; Fischer D; Wadhwani P; Weinkauf S; Ulrich AS Chemphyschem; 2006 Oct; 7(10):2134-42. PubMed ID: 16986196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]