BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

772 related articles for article (PubMed ID: 28153699)

  • 1. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water.
    Pan Y; Wang Y; Li A; Xu B; Xian Q; Shuang C; Shi P; Zhou Q
    Water Res; 2017 Apr; 112():129-136. PubMed ID: 28153699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.
    Pan Y; Li W; An H; Cui H; Wang Y
    Chemosphere; 2016 Feb; 144():2312-20. PubMed ID: 26606185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New phenolic halogenated disinfection byproducts in simulated chlorinated drinking water: Identification, decomposition, and control by ozone-activated carbon treatment.
    Huang Y; Li H; Zhou Q; Li A; Shuang C; Xian Q; Xu B; Pan Y
    Water Res; 2018 Dec; 146():298-306. PubMed ID: 30292954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.
    Pan Y; Zhang X
    Environ Sci Technol; 2013 Feb; 47(3):1265-73. PubMed ID: 23298294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Group of Disinfection Byproducts in Drinking Water: Trihalo-hydroxy-cyclopentene-diones.
    Pan Y; Li W; Li A; Zhou Q; Shi P; Wang Y
    Environ Sci Technol; 2016 Jul; 50(14):7344-52. PubMed ID: 27286323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination.
    Zhai H; Zhang X
    Environ Sci Technol; 2011 Mar; 45(6):2194-201. PubMed ID: 21323365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of brominated disinfection byproducts during Chloramination of drinking water: new polar species and overall kinetics.
    Zhai H; Zhang X; Zhu X; Liu J; Ji M
    Environ Sci Technol; 2014; 48(5):2579-88. PubMed ID: 24512354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [New Bromated Phenolic Disinfection Byproducts: Mechanism of Their Decomposition During Chlorination].
    Li H; Li ZK; Li AM; Zhou Q; Wang Y; Pan Y
    Huan Jing Ke Xue; 2017 Aug; 38(8):3273-3280. PubMed ID: 29964935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boiling of simulated tap water: effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity.
    Pan Y; Zhang X; Wagner ED; Osiol J; Plewa MJ
    Environ Sci Technol; 2014; 48(1):149-56. PubMed ID: 24308807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt.
    Pan Y; Zhang X; Li Y
    Water Res; 2016 Jan; 88():60-68. PubMed ID: 26474150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ozone dose on brominated DBPs in subsequent chlor(am)ination: A comprehensive study of aliphatic, alicyclic and aromatic DBPs.
    Han J; Zhai H; Zhang X; Liu J; Sharma VK
    Water Res; 2024 Feb; 250():121039. PubMed ID: 38142503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A picture of polar iodinated disinfection byproducts in drinking water by (UPLC/)ESI-tqMS.
    Ding G; Zhang X
    Environ Sci Technol; 2009 Dec; 43(24):9287-93. PubMed ID: 20000522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: a review.
    Sharma VK; Zboril R; McDonald TJ
    J Environ Sci Health B; 2014; 49(3):212-28. PubMed ID: 24380621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of new brominated disinfection byproducts during chlorination of saline sewage effluents.
    Ding G; Zhang X; Yang M; Pan Y
    Water Res; 2013 May; 47(8):2710-8. PubMed ID: 23510691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for differentiating adducts of common drinking water DBPs from higher molecular weight DBPs in electrospray ionization-mass spectrometry analysis.
    Zhai H; Zhang X
    Water Res; 2009 May; 43(8):2093-100. PubMed ID: 19223057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection, transformation, and toxicity of indole-derivative nonsteroidal anti-inflammatory drugs during chlorine disinfection.
    Qiu J; Huang Y; Wu Y; Shi P; Xu B; Chu W; Pan Y
    Chemosphere; 2020 Dec; 260():127579. PubMed ID: 32679375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry.
    Zhang H; Zhang Y; Shi Q; Zheng H; Yang M
    Environ Sci Technol; 2014 Mar; 48(6):3112-9. PubMed ID: 24568637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and Occurrence of N-Chloro-2,2-dichloroacetamide, a Previously Overlooked Nitrogenous Disinfection Byproduct in Chlorinated Drinking Waters.
    Yu Y; Reckhow DA
    Environ Sci Technol; 2017 Feb; 51(3):1488-1497. PubMed ID: 27996252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.