These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28153722)

  • 81. miR-101 Enhances Cisplatin-Induced DNA Damage Through Decreasing Nicotinamide Adenine Dinucleotide Phosphate Levels by Directly Repressing Tp53-Induced Glycolysis and Apoptosis Regulator Expression in Prostate Cancer Cells.
    Huang S; Yang Z; Ma Y; Yang Y; Wang S
    DNA Cell Biol; 2017 Apr; 36(4):303-310. PubMed ID: 28384067
    [TBL] [Abstract][Full Text] [Related]  

  • 82. MicroRNA‑301a‑3p overexpression promotes cell invasion and proliferation by targeting runt‑related transcription factor 3 in prostate cancer.
    Fan L; Wang Y; Huo W; Wang WH
    Mol Med Rep; 2019 Oct; 20(4):3755-3763. PubMed ID: 31485638
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cell fate regulation by reticulon-4 in human prostate cancers.
    Zhao H; Su W; Zhu C; Zeng T; Yang S; Wu W; Wang D
    J Cell Physiol; 2019 Jul; 234(7):10372-10385. PubMed ID: 30480803
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer.
    Khan AP; Poisson LM; Bhat VB; Fermin D; Zhao R; Kalyana-Sundaram S; Michailidis G; Nesvizhskii AI; Omenn GS; Chinnaiyan AM; Sreekumar A
    Mol Cell Proteomics; 2010 Feb; 9(2):298-312. PubMed ID: 19955085
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Expression of Dixdc1 and its Role in Astrocyte Proliferation after Traumatic Brain Injury.
    Lu H; Jiang R; Tao X; Duan C; Huang J; Huan W; He Y; Ge J; Ren J
    Cell Mol Neurobiol; 2017 Aug; 37(6):1131-1139. PubMed ID: 27873129
    [TBL] [Abstract][Full Text] [Related]  

  • 86. MiR-1298 affects cell proliferation and apoptosis in C6 cells by targeting SET domain containing 7.
    Wang CM; Cheng BH; Xue QJ; Chen J; Bai B
    Int J Immunopathol Pharmacol; 2017 Sep; 30(3):264-271. PubMed ID: 28762861
    [TBL] [Abstract][Full Text] [Related]  

  • 87. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice.
    Clapé C; Fritz V; Henriquet C; Apparailly F; Fernandez PL; Iborra F; Avancès C; Villalba M; Culine S; Fajas L
    PLoS One; 2009 Oct; 4(10):e7542. PubMed ID: 19855844
    [TBL] [Abstract][Full Text] [Related]  

  • 88. miR-202 suppresses prostate cancer growth and metastasis by targeting PIK3CA.
    Zhang S; Cai J; Xie W; Luo H; Yang F
    Exp Ther Med; 2018 Aug; 16(2):1499-1504. PubMed ID: 30112070
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes.
    Takeshita F; Patrawala L; Osaki M; Takahashi RU; Yamamoto Y; Kosaka N; Kawamata M; Kelnar K; Bader AG; Brown D; Ochiya T
    Mol Ther; 2010 Jan; 18(1):181-7. PubMed ID: 19738602
    [TBL] [Abstract][Full Text] [Related]  

  • 90. MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer.
    Zhou P; Chen WG; Li XW
    Am J Cancer Res; 2015; 5(6):2056-63. PubMed ID: 26269764
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Proteomic Analysis Reveals Autism-Associated Gene
    Kwan V; Rosa E; Xing S; Murtaza N; Singh K; Holzapfel NT; Berg T; Lu Y; Singh KK
    J Proteome Res; 2021 Jan; 20(1):1052-1062. PubMed ID: 33337894
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Roles of microRNA in prostate cancer cell metabolism.
    Kasomva K; Sen A; Paulraj MG; Sailo S; Raphael V; Puro KU; Assumi SR; Ignacimuthu S
    Int J Biochem Cell Biol; 2018 Sep; 102():109-116. PubMed ID: 30010013
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Abnormal behavior in mice mutant for the Disc1 binding partner, Dixdc1.
    Kivimäe S; Martin PM; Kapfhamer D; Ruan Y; Heberlein U; Rubenstein JL; Cheyette BN
    Transl Psychiatry; 2011 Sep; 1(9):e43. PubMed ID: 22832659
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Breast cancer metastasis suppressor 1 (BRMS1) suppresses prostate cancer progression by inducing apoptosis and regulating invasion.
    Zhang HM; Qiao QD; Xie HF; Wei JX
    Eur Rev Med Pharmacol Sci; 2017 Jan; 21(1):68-75. PubMed ID: 28121354
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Overexpression of miR-96 promotes cell proliferation by targeting FOXF2 in prostate cancer.
    Wei WR; Zeng GJ; Liu C; Zou BW; Li L
    Int J Clin Exp Pathol; 2017; 10(7):7596-7602. PubMed ID: 31966604
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Competitive interactions of cancer cells and normal cells via secretory microRNAs.
    Kosaka N; Iguchi H; Yoshioka Y; Hagiwara K; Takeshita F; Ochiya T
    J Biol Chem; 2012 Jan; 287(2):1397-405. PubMed ID: 22123823
    [TBL] [Abstract][Full Text] [Related]  

  • 97. MicroRNA-21: from cancer to cardiovascular disease.
    Jazbutyte V; Thum T
    Curr Drug Targets; 2010 Aug; 11(8):926-35. PubMed ID: 20415649
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Androgen receptor modulatory miR-1271-5p can promote hormone sensitive prostate cancer cell growth.
    Kalofonou F; Leach DA; Powell SM; Waxman J; Fletcher CE; Bevan CL
    Front Oncol; 2024; 14():1440612. PubMed ID: 39267821
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Unlocking the role of non-coding RNAs in prostate cancer progression: exploring the interplay with the Wnt signaling pathway.
    Bu T; Li L; Tian J
    Front Pharmacol; 2023; 14():1269233. PubMed ID: 37829301
    [TBL] [Abstract][Full Text] [Related]  

  • 100. MiR-183-5p promotes migration and invasion of prostate cancer by targeting TET1.
    Feng Y; Wang K; Qin M; Zhuang Q; Chen Z
    BMC Urol; 2023 Jul; 23(1):116. PubMed ID: 37430206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.