BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28153948)

  • 1. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast.
    Wallace EWJ; Beggs JD
    RNA; 2017 May; 23(5):601-610. PubMed ID: 28153948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast.
    Aslanzadeh V; Huang Y; Sanguinetti G; Beggs JD
    Genome Res; 2018 Feb; 28(2):203-213. PubMed ID: 29254943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the window of opportunity for cotranscriptional splicing in budding yeast.
    Aslanzadeh V; Beggs JD
    RNA; 2020 Sep; 26(9):1081-1085. PubMed ID: 32439718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splicing-dependent RNA polymerase pausing in yeast.
    Alexander RD; Innocente SA; Barrass JD; Beggs JD
    Mol Cell; 2010 Nov; 40(4):582-93. PubMed ID: 21095588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing.
    Kong KY; Tang HM; Pan K; Huang Z; Lee TH; Hinnebusch AG; Jin DY; Wong CM
    Nucleic Acids Res; 2014 Jan; 42(1):643-60. PubMed ID: 24097436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase II.
    Oesterreich FC; Herzel L; Straube K; Hujer K; Howard J; Neugebauer KM
    Cell; 2016 Apr; 165(2):372-381. PubMed ID: 27020755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate.
    Fong N; Kim H; Zhou Y; Ji X; Qiu J; Saldi T; Diener K; Jones K; Fu XD; Bentley DL
    Genes Dev; 2014 Dec; 28(23):2663-76. PubMed ID: 25452276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.
    Herzel L; Straube K; Neugebauer KM
    Genome Res; 2018 Jul; 28(7):1008-1019. PubMed ID: 29903723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-mRNA splicing and its cotranscriptional connections.
    Shenasa H; Bentley DL
    Trends Genet; 2023 Sep; 39(9):672-685. PubMed ID: 37236814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate.
    Moehle EA; Braberg H; Krogan NJ; Guthrie C
    RNA Biol; 2014; 11(4):313-9. PubMed ID: 24717535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse.
    Khodor YL; Menet JS; Tolan M; Rosbash M
    RNA; 2012 Dec; 18(12):2174-86. PubMed ID: 23097425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription and splicing dynamics during early
    PrudĂȘncio P; Savisaar R; Rebelo K; Martinho RG; Carmo-Fonseca M
    RNA; 2022 Feb; 28(2):139-161. PubMed ID: 34667107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing.
    Brody Y; Neufeld N; Bieberstein N; Causse SZ; Böhnlein EM; Neugebauer KM; Darzacq X; Shav-Tal Y
    PLoS Biol; 2011 Jan; 9(1):e1000573. PubMed ID: 21264352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila.
    Khodor YL; Rodriguez J; Abruzzi KC; Tang CH; Marr MT; Rosbash M
    Genes Dev; 2011 Dec; 25(23):2502-12. PubMed ID: 22156210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis.
    Reimer KA; Mimoso CA; Adelman K; Neugebauer KM
    Mol Cell; 2021 Mar; 81(5):998-1012.e7. PubMed ID: 33440169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pause locally, splice globally.
    Carrillo Oesterreich F; Bieberstein N; Neugebauer KM
    Trends Cell Biol; 2011 Jun; 21(6):328-35. PubMed ID: 21530266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What is the switch for coupling transcription and splicing? RNA Polymerase II C-terminal domain phosphorylation, phase separation and beyond.
    Maita H; Nakagawa S
    Wiley Interdiscip Rev RNA; 2020 Jan; 11(1):e1574. PubMed ID: 31680436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein.
    Lewin AS; Thomas J; Tirupati HK
    Mol Cell Biol; 1995 Dec; 15(12):6971-8. PubMed ID: 8524264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast.
    Jackson SA; Koduvayur S; Woodson SA
    RNA; 2006 Dec; 12(12):2149-59. PubMed ID: 17135489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants.
    Jia J; Long Y; Zhang H; Li Z; Liu Z; Zhao Y; Lu D; Jin X; Deng X; Xia R; Cao X; Zhai J
    Nat Plants; 2020 Jul; 6(7):780-788. PubMed ID: 32541953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.