These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28154008)

  • 41. The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes.
    Brul S; King A; van der Vaart JM; Chapman J; Klis F; Verrips CT
    Antonie Van Leeuwenhoek; 1997 Oct; 72(3):229-37. PubMed ID: 9403108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Bacteroidetes locus dedicated to fungal 1,6-β-glucan degradation: Unique substrate conformation drives specificity of the key endo-1,6-β-glucanase.
    Temple MJ; Cuskin F; Baslé A; Hickey N; Speciale G; Williams SJ; Gilbert HJ; Lowe EC
    J Biol Chem; 2017 Jun; 292(25):10639-10650. PubMed ID: 28461332
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Covalent association of beta-1,3-glucan with beta-1,6-glucosylated mannoproteins in cell walls of Candida albicans.
    Kapteyn JC; Montijn RC; Dijkgraaf GJ; Van den Ende H; Klis FM
    J Bacteriol; 1995 Jul; 177(13):3788-92. PubMed ID: 7541400
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzymatic method to measure β-1,3-β-1,6-glucan content in extracts and formulated products (GEM assay).
    Danielson ME; Dauth R; Elmasry NA; Langeslay RR; Magee AS; Will PM
    J Agric Food Chem; 2010 Oct; 58(19):10305-8. PubMed ID: 20809622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Infection of P388D1 macrophages and respiratory epithelial cells by Histoplasma capsulatum: selection of avirulent variants and their potential role in persistent histoplasmosis.
    Eissenberg LG; West JL; Woods JP; Goldman WE
    Infect Immun; 1991 May; 59(5):1639-46. PubMed ID: 2019435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stereochemical course of glucan hydrolysis by barley (1-->3)- and (1-->3, 1-->4)-beta-glucanases.
    Chen L; Sadek M; Stone BA; Brownlee RT; Fincher GB; Høj PB
    Biochim Biophys Acta; 1995 Nov; 1253(1):112-6. PubMed ID: 7492591
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A transglycosylating 1,3(4)-beta-glucanase from rhodothermus marinus NMR analysis of enzyme reactions.
    Petersen BO; Krah M; Duus JO; Thomsen KK
    Eur J Biochem; 2000 Jan; 267(2):361-9. PubMed ID: 10632706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel sources of β-glucanase for the enzymatic degradation of schizophyllan.
    Sutivisedsak N; Leathers TD; Bischoff KM; Nunnally MS; Peterson SW
    Enzyme Microb Technol; 2013 Mar; 52(3):203-10. PubMed ID: 23410934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new recombinant endo-1,3-β-D-glucanase from the marine bacterium Formosa algae KMM 3553: enzyme characteristics and transglycosylation products analysis.
    Kusaykin MI; Belik AA; Kovalchuk SN; Dmitrenok PS; Rasskazov VA; Isakov VV; Zvyagintseva TN
    World J Microbiol Biotechnol; 2017 Feb; 33(2):40. PubMed ID: 28120311
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of beta-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene.
    Goldman RC; Sullivan PA; Zakula D; Capobianco JO
    Eur J Biochem; 1995 Jan; 227(1-2):372-8. PubMed ID: 7851411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of beta-1,3-glucan from Septoria tritici on structural defence responses in wheat.
    Shetty NP; Jensen JD; Knudsen A; Finnie C; Geshi N; Blennow A; Collinge DB; Jørgensen HJ
    J Exp Bot; 2009; 60(15):4287-300. PubMed ID: 19880540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and properties of a basic endo-1,3-beta-glucanase from rice (Oryza sativa L.).
    Akiyama T; Kaku H; Shibuya N
    Plant Cell Physiol; 1996 Jul; 37(5):702-5. PubMed ID: 8819316
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical Characterization of a Novel Endo-1,3-β-Glucanase from the Scallop
    Li Z; Liu W; Lyu Q
    Mar Drugs; 2020 Sep; 18(9):. PubMed ID: 32947865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts.
    Schiavone M; Vax A; Formosa C; Martin-Yken H; Dague E; François JM
    FEMS Yeast Res; 2014 Sep; 14(6):933-47. PubMed ID: 25041403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An alpha-(1,4)-amylase is essential for alpha-(1,3)-glucan production and virulence in Histoplasma capsulatum.
    Marion CL; Rappleye CA; Engle JT; Goldman WE
    Mol Microbiol; 2006 Nov; 62(4):970-83. PubMed ID: 17038119
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases.
    Michalko J; Socha P; Mészáros P; Blehová A; Libantová J; Moravčíková J; Matušíková I
    Planta; 2013 Oct; 238(4):715-25. PubMed ID: 23832529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel Anti-Fungal d-Laminaripentaose-Releasing Endo-β-1,3-glucanase with a RICIN-like Domain from
    Bai L; Kim J; Son KH; Shin DH; Ku BH; Kim DY; Park HY
    Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe.
    Martín-Cuadrado AB; Dueñas E; Sipiczki M; Vázquez de Aldana CR; del Rey F
    J Cell Sci; 2003 May; 116(Pt 9):1689-98. PubMed ID: 12665550
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching.
    Adams EL; Rice PJ; Graves B; Ensley HE; Yu H; Brown GD; Gordon S; Monteiro MA; Papp-Szabo E; Lowman DW; Power TD; Wempe MF; Williams DL
    J Pharmacol Exp Ther; 2008 Apr; 325(1):115-23. PubMed ID: 18171906
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glucanase-Induced Stipe Wall Extension Shows Distinct Differences from Chitinase-Induced Stipe Wall Extension of Coprinopsis cinerea.
    Kang L; Zhou J; Wang R; Zhang X; Liu C; Liu Z; Yuan S
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.