These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28154150)

  • 1. Structural and Functional Cortical Connectivity Mediating Cross Education of Motor Function.
    Ruddy KL; Leemans A; Woolley DG; Wenderoth N; Carson RG
    J Neurosci; 2017 Mar; 37(10):2555-2564. PubMed ID: 28154150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes.
    Stöckel T; Carroll TJ; Summers JJ; Hinder MR
    J Neurophysiol; 2016 Aug; 116(2):575-86. PubMed ID: 27169508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex.
    Auer T; Dewiputri WI; Frahm J; Schweizer R
    Neuroscience; 2018 May; 378():22-33. PubMed ID: 27133575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural connectivity prior to whole-body sensorimotor skill learning associates with changes in resting state functional connectivity.
    Mizuguchi N; Maudrich T; Kenville R; Carius D; Maudrich D; Villringer A; Ragert P
    Neuroimage; 2019 Aug; 197():191-199. PubMed ID: 31029869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: neural adaptations and behavioral implications.
    Hinder MR; Carroll TJ; Summers JJ
    J Neurophysiol; 2013 Jun; 109(12):2963-71. PubMed ID: 23536709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcallosal connectivity of the human cortical motor network.
    Ruddy KL; Leemans A; Carson RG
    Brain Struct Funct; 2017 Apr; 222(3):1243-1252. PubMed ID: 27469272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning.
    Sidarta A; Vahdat S; Bernardi NF; Ostry DJ
    J Neurosci; 2016 Nov; 36(46):11682-11692. PubMed ID: 27852776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice.
    Lee M; Hinder MR; Gandevia SC; Carroll TJ
    J Physiol; 2010 Jan; 588(Pt 1):201-12. PubMed ID: 19917563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-limb transfer of ballistic motor skill following non-dominant limb training in young and older adults.
    Hinder MR; Carroll TJ; Summers JJ
    Exp Brain Res; 2013 May; 227(1):19-29. PubMed ID: 23535836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.
    McGregor HR; Gribble PL
    J Neurophysiol; 2017 Aug; 118(2):1235-1243. PubMed ID: 28566463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colocalized White Matter Plasticity and Increased Cerebral Blood Flow Mediate the Beneficial Effect of Cardiovascular Exercise on Long-Term Motor Learning.
    Lehmann N; Villringer A; Taubert M
    J Neurosci; 2020 Mar; 40(12):2416-2429. PubMed ID: 32041897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural correlates of intermanual transfer.
    Dirren E; Bourgeois A; Klug J; Kleinschmidt A; van Assche M; Carrera E
    Neuroimage; 2021 Dec; 245():118657. PubMed ID: 34687859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. White matter microstructural organisation of interhemispheric pathways predicts different stages of bimanual coordination learning in young and older adults.
    Zivari Adab H; Chalavi S; Beets IAM; Gooijers J; Leunissen I; Cheval B; Collier Q; Sijbers J; Jeurissen B; Swinnen SP; Boisgontier MP
    Eur J Neurosci; 2018 Mar; 47(5):446-459. PubMed ID: 29363832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and neural effects of congruency of visual feedback during short-term motor learning.
    Ossmy O; Mukamel R
    Neuroimage; 2018 May; 172():864-873. PubMed ID: 29253651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task.
    Ruddy KL; Rudolf AK; Kalkman B; King M; Daffertshofer A; Carroll TJ; Carson RG
    Front Hum Neurosci; 2016; 10():204. PubMed ID: 27199722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. White matter integrity of motor connections related to training gains in healthy aging.
    Schulz R; Zimerman M; Timmermann JE; Wessel MJ; Gerloff C; Hummel FC
    Neurobiol Aging; 2014 Jun; 35(6):1404-11. PubMed ID: 24387983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in functional connectivity and GABA levels with long-term motor learning.
    Sampaio-Baptista C; Filippini N; Stagg CJ; Near J; Scholz J; Johansen-Berg H
    Neuroimage; 2015 Feb; 106():15-20. PubMed ID: 25463472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamo-Cortical White Matter Underlies Motor Memory Consolidation via Modulation of Sleep Spindles in Young and Older Adults.
    Vien C; Boré A; Boutin A; Pinsard B; Carrier J; Doyon J; Fogel S
    Neuroscience; 2019 Mar; 402():104-115. PubMed ID: 30615913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resting-state cortical connectivity predicts motor skill acquisition.
    Wu J; Srinivasan R; Kaur A; Cramer SC
    Neuroimage; 2014 May; 91():84-90. PubMed ID: 24473097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar-M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific.
    Spampinato DA; Block HJ; Celnik PA
    J Neurosci; 2017 Mar; 37(9):2377-2386. PubMed ID: 28137969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.