BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28154176)

  • 41. PPDPF Promotes the Development of Mutant KRAS-Driven Pancreatic Ductal Adenocarcinoma by Regulating the GEF Activity of SOS1.
    Ni QZ; Zhu B; Ji Y; Zheng QW; Liang X; Ma N; Jiang H; Zhang FK; Shang YR; Wang YK; Xu S; Zhang EB; Yuan YM; Chen TW; Yin FF; Cao HJ; Huang JY; Xia J; Ding XF; Qiu XS; Ding K; Song C; Zhou WT; Wu M; Wang K; Lui R; Lin Q; Chen W; Li ZG; Cheng SQ; Wang XF; Xie D; Li JJ
    Adv Sci (Weinh); 2023 Jan; 10(2):e2202448. PubMed ID: 36453576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular dynamics simulations of Gly-12-->Val mutant of p21(ras): dynamic inhibition mechanism.
    Futatsugi N; Tsuda M
    Biophys J; 2001 Dec; 81(6):3483-8. PubMed ID: 11721009
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synaptic GAP and GEF Complexes Cluster Proteins Essential for GTP Signaling.
    Wilkinson B; Li J; Coba MP
    Sci Rep; 2017 Jul; 7(1):5272. PubMed ID: 28706196
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structures of RGL1 RAS-Association Domain in Complex with KRAS and the Oncogenic G12V Mutant.
    Eves BJ; Gebregiworgis T; Gasmi-Seabrook GMC; Kuntz DA; Privé GG; Marshall CB; Ikura M
    J Mol Biol; 2022 May; 434(9):167527. PubMed ID: 35257782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulators and effectors of ras proteins.
    Bollag G; McCormick F
    Annu Rev Cell Biol; 1991; 7():601-32. PubMed ID: 1667084
    [No Abstract]   [Full Text] [Related]  

  • 46. Identification of amino acid residues of Ras protein that are essential for signal-transducing activity but not for enhancement of GTPase activity by GAP.
    Fujita-Yoshigaki J; Shirouzu M; Koide H; Nishimura S; Yokoyama S
    FEBS Lett; 1991 Dec; 294(3):187-90. PubMed ID: 1756860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMR Detection Methods for Profiling RAS Nucleotide Cycling.
    Killoran RC; Smith MJ
    Methods Mol Biol; 2021; 2262():169-182. PubMed ID: 33977476
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A synthetic peptide corresponding to a sequence in the GTPase activating protein inhibits p21ras stimulation and promotes guanine nucleotide exchange.
    Rubinfeld B; Wong G; Bekesi E; Wood A; Heimer E; McCormick F; Polakis P
    Int J Pept Protein Res; 1991 Jul; 38(1):47-53. PubMed ID: 1938104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis.
    Privé GG; Milburn MV; Tong L; de Vos AM; Yamaizumi Z; Nishimura S; Kim SH
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3649-53. PubMed ID: 1565661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small Molecule KRAS Agonist for Mutant KRAS Cancer Therapy.
    Xu K; Park D; Magis AT; Zhang J; Zhou W; Sica GL; Ramalingam SS; Curran WJ; Deng X
    Mol Cancer; 2019 Apr; 18(1):85. PubMed ID: 30971271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-Redundant and Overlapping Oncogenic Readouts of Non-Canonical and Novel Colorectal Cancer KRAS and NRAS Mutants.
    Alcantara KMM; Malapit JRP; Yu RTD; Garrido JAMG; Rigor JPT; Angeles AKJ; Cutiongco-de la Paz EM; Garcia RL
    Cells; 2019 Dec; 8(12):. PubMed ID: 31816869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42.
    Kintscher C; Groemping Y
    J Mol Biol; 2009 Mar; 387(2):270-83. PubMed ID: 19356586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-Time Monitoring of RAS Activity Using In Vitro and In-Cell NMR Spectroscopy.
    Zhao Q; Shimada I; Nishida N
    Methods Mol Biol; 2024; 2797():237-252. PubMed ID: 38570464
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: an experimental and theoretical study.
    Frech M; Darden TA; Pedersen LG; Foley CK; Charifson PS; Anderson MW; Wittinghofer A
    Biochemistry; 1994 Mar; 33(11):3237-44. PubMed ID: 8136358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GTP-Bound N-Ras Conformational States and Substates Are Modulated by Membrane and Point Mutation.
    Farcas A; Janosi L
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis.
    Rabara D; Tran TH; Dharmaiah S; Stephens RM; McCormick F; Simanshu DK; Holderfield M
    Proc Natl Acad Sci U S A; 2019 Oct; 116(44):22122-22131. PubMed ID: 31611389
    [No Abstract]   [Full Text] [Related]  

  • 57. Isoform-Specific Destabilization of the Active Site Reveals a Molecular Mechanism of Intrinsic Activation of KRas G13D.
    Johnson CW; Lin YJ; Reid D; Parker J; Pavlopoulos S; Dischinger P; Graveel C; Aguirre AJ; Steensma M; Haigis KM; Mattos C
    Cell Rep; 2019 Aug; 28(6):1538-1550.e7. PubMed ID: 31390567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of small GTPases by GEFs, GAPs, and GDIs.
    Cherfils J; Zeghouf M
    Physiol Rev; 2013 Jan; 93(1):269-309. PubMed ID: 23303910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of RAS oncogenicity by acetylation.
    Yang MH; Nickerson S; Kim ET; Liot C; Laurent G; Spang R; Philips MR; Shan Y; Shaw DE; Bar-Sagi D; Haigis MC; Haigis KM
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10843-8. PubMed ID: 22711838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras.
    Franken SM; Scheidig AJ; Krengel U; Rensland H; Lautwein A; Geyer M; Scheffzek K; Goody RS; Kalbitzer HR; Pai EF
    Biochemistry; 1993 Aug; 32(33):8411-20. PubMed ID: 8357792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.