These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28154860)

  • 1. Kinetic aspects of chain growth in Fischer-Tropsch synthesis.
    Filot IAW; Zijlstra B; Broos RJP; Chen W; Pestman R; Hensen EJM
    Faraday Discuss; 2017 Apr; 197():153-164. PubMed ID: 28154860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optimally performing Fischer-Tropsch catalyst.
    Filot IA; van Santen RA; Hensen EJ
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12746-50. PubMed ID: 25168456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microkinetics of oxygenate formation in the Fischer-Tropsch reaction.
    van Santen RA; Ghouri M; Hensen EM
    Phys Chem Chem Phys; 2014 Jun; 16(21):10041-58. PubMed ID: 24509610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer-Tropsch Synthesis.
    Chen W; Filot IAW; Pestman R; Hensen EJM
    ACS Catal; 2017 Dec; 7(12):8061-8071. PubMed ID: 29226010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and microkinetics of the Fischer-Tropsch reaction.
    van Santen RA; Markvoort AJ; Filot IA; Ghouri MM; Hensen EJ
    Phys Chem Chem Phys; 2013 Oct; 15(40):17038-63. PubMed ID: 24030478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies.
    Chen J; Liu ZP
    J Am Chem Soc; 2008 Jun; 130(25):7929-37. PubMed ID: 18507384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Carbon Deposits on the Cobalt-Catalyzed Fischer-Tropsch Reaction: Evidence of a Two-Site Reaction Model.
    Chen W; Kimpel TF; Song Y; Chiang FK; Zijlstra B; Pestman R; Wang P; Hensen EJM
    ACS Catal; 2018 Feb; 8(2):1580-1590. PubMed ID: 29910971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of electrophilic species in the Fischer-Tropsch reaction.
    Maitlis PM; Zanotti V
    Chem Commun (Camb); 2009 Apr; (13):1619-34. PubMed ID: 19294244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalyst nano-particle size dependence of the Fischer-Tropsch reaction.
    van Santen RA; Markvoor AJ
    Faraday Discuss; 2013; 162():267-79. PubMed ID: 24015588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic role of water on the rate and selectivity of Fischer-Tropsch synthesis on ruthenium catalysts.
    Hibbitts DD; Loveless BT; Neurock M; Iglesia E
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12273-8. PubMed ID: 24123803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Fischer-Tropsch mechanism: a combined DFT and microkinetic investigation of C-C bond formation on Ru.
    Mirwald JW; Inderwildi OR
    Phys Chem Chem Phys; 2012 May; 14(19):7028-31. PubMed ID: 22482113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insight into carbon-carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions.
    Weststrate CJK; Sharma D; Garcia Rodriguez D; Gleeson MA; Fredriksson HOA; Niemantsverdriet JWH
    Nat Commun; 2020 Feb; 11(1):750. PubMed ID: 32029729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction.
    Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH
    J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective hydrogenation of CO on Fe
    Roldan A; de Leeuw NH
    Faraday Discuss; 2017 Apr; 197():325-336. PubMed ID: 28181612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer-Tropsch environment.
    Wolf M; Kotzé H; Fischer N; Claeys M
    Faraday Discuss; 2017 Apr; 197():243-268. PubMed ID: 28198896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site regeneration in the Fischer-Tropsch synthesis reaction: a synchronized CO dissociation and C-C coupling pathway.
    Shetty SG; Ciobîcă IM; Hensen EJ; van Santen RA
    Chem Commun (Camb); 2011 Sep; 47(35):9822-4. PubMed ID: 21818499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the Fischer-Tropsch mechanism on hcp-Fe
    Ren J; Ai N; Yu Y
    RSC Adv; 2021 Oct; 11(55):34533-34543. PubMed ID: 35494742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new insight into Fischer-Tropsch synthesis.
    Liu ZP; Hu P
    J Am Chem Soc; 2002 Oct; 124(39):11568-9. PubMed ID: 12296701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.