BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28154873)

  • 1. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors.
    Paterson AS; Raja B; Mandadi V; Townsend B; Lee M; Buell A; Vu B; Brgoch J; Willson RC
    Lab Chip; 2017 Mar; 17(6):1051-1059. PubMed ID: 28154873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Easy Diagnosis of Jaundice: A Smartphone-Based Nanosensor Bioplatform Using Photoluminescent Bacterial Nanopaper for Point-of-Care Diagnosis of Hyperbilirubinemia.
    Tabatabaee RS; Golmohammadi H; Ahmadi SH
    ACS Sens; 2019 Apr; 4(4):1063-1071. PubMed ID: 30896150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection.
    Zangheri M; Cevenini L; Anfossi L; Baggiani C; Simoni P; Di Nardo F; Roda A
    Biosens Bioelectron; 2015 Feb; 64():63-8. PubMed ID: 25194797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smartphone-based low light detection for bioluminescence application.
    Kim H; Jung Y; Doh IJ; Lozano-Mahecha RA; Applegate B; Bae E
    Sci Rep; 2017 Jan; 7():40203. PubMed ID: 28067287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artesunate-luminol chemiluminescence system for the detection of hemin.
    Fereja TH; Kitte SA; Gao W; Yuan F; Snizhko D; Qi L; Nsabimana A; Liu Z; Xu G
    Talanta; 2019 Nov; 204():379-385. PubMed ID: 31357309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Blue Persistent Luminescence in (Sr
    Finley E; Cobb A; Duke A; Paterson A; Brgoch J
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26956-26963. PubMed ID: 27635436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1.
    Rong Z; Wang Q; Sun N; Jia X; Wang K; Xiao R; Wang S
    Anal Chim Acta; 2019 May; 1055():140-147. PubMed ID: 30782365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-Based Point-of-Care Microfluidic Platform Fabricated with a ZnO Nanorod Template for Colorimetric Virus Detection.
    Xia Y; Chen Y; Tang Y; Cheng G; Yu X; He H; Cao G; Lu H; Liu Z; Zheng SY
    ACS Sens; 2019 Dec; 4(12):3298-3307. PubMed ID: 31769284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescent Molecules and Materials as Diagnostic Reporters in Lateral Flow Assays.
    Danthanarayana AN; Brgoch J; Willson RC
    ACS Appl Bio Mater; 2022 Jan; 5(1):82-96. PubMed ID: 35014811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile Phone Ratiometric Imaging Enables Highly Sensitive Fluorescence Lateral Flow Immunoassays without External Optical Filters.
    Shah KG; Singh V; Kauffman PC; Abe K; Yager P
    Anal Chem; 2018 Jun; 90(11):6967-6974. PubMed ID: 29715012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glowstick-inspired smartphone-readable reporters for sensitive, multiplexed lateral flow immunoassays.
    Brosamer K; Kourentzi K; Willson RC; Vu BV
    Commun Eng; 2023; 2():. PubMed ID: 38586601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Blue Emitting Calcium-Aluminate Phosphor.
    Kim D; Kim HE; Kim CH
    PLoS One; 2016; 11(9):e0162920. PubMed ID: 27648560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid enumeration of CD4 + T lymphocytes using an integrated microfluidic system based on Chemiluminescence image detection at point-of-care testing.
    Qiu X; Yang S; Wu D; Wang D; Qiao S; Ge S; Xia N; Yu D; Qian S
    Biomed Microdevices; 2018 Feb; 20(1):15. PubMed ID: 29423764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing.
    Gong Y; Zheng Y; Jin B; You M; Wang J; Li X; Lin M; Xu F; Li F
    Talanta; 2019 Aug; 201():126-133. PubMed ID: 31122402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-Catalyzed Self-Growing Spherical Nucleic Acid Enzyme (SNAzyme) as a Double Amplifier for Ultrasensitive Chemiluminescence MicroRNA Detection.
    Shi L; Sun Y; Mi L; Li T
    ACS Sens; 2019 Dec; 4(12):3219-3226. PubMed ID: 31763826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-Enabled Detection Strategies for Portable PCR-Based Diagnostics.
    Priye A; Ugaz VM
    Methods Mol Biol; 2017; 1571():251-266. PubMed ID: 28281261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device.
    Barbosa AI; Gehlot P; Sidapra K; Edwards AD; Reis NM
    Biosens Bioelectron; 2015 Aug; 70():5-14. PubMed ID: 25775968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging a smartphone to perform time-gated luminescence measurements.
    Fratto BE; Culver EL; Davis G; Deans R; Goods JB; Hwang S; Keller NK; Lawrence JA; Petty AR; Swager TM; Walish JJ; Zhu Z; Cox JR
    PLoS One; 2023; 18(10):e0293740. PubMed ID: 37903097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor.
    Kim D; Kim HE; Kim CH
    PLoS One; 2016; 11(1):e0145434. PubMed ID: 26731086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.