These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28154876)

  • 1. Comparison of different models of motion in a crowded environment: a Monte Carlo study.
    Polanowski P; Sikorski A
    Soft Matter; 2017 Feb; 13(8):1693-1701. PubMed ID: 28154876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion in a crowded environment: the influence of obstacles' size and shape and model of transport.
    Polanowski P; Sikorski A
    J Mol Model; 2019 Mar; 25(3):84. PubMed ID: 30826982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Molecular Transport in Systems Containing Mobile Obstacles.
    Polanowski P; Sikorski A
    J Phys Chem B; 2016 Aug; 120(30):7529-37. PubMed ID: 27387448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular transport in systems containing binding obstacles.
    Polanowski P; Sikorski A
    Soft Matter; 2019 Dec; 15(48):10045-10054. PubMed ID: 31769460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of diffusion in a crowded environment.
    Polanowski P; Sikorski A
    Soft Matter; 2014 May; 10(20):3597-607. PubMed ID: 24663121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion of small particles in polymer films.
    Polanowski P; Sikorski A
    J Chem Phys; 2017 Jul; 147(1):014902. PubMed ID: 28688408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Percolation in polymer-solvent systems: a Monte Carlo study.
    Adamczyk P; Polanowski P; Sikorski A
    J Chem Phys; 2009 Dec; 131(23):234901. PubMed ID: 20025342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating the Fickian diffusivity for a lattice-based random walk with agents and obstacles of different shapes and sizes.
    Ellery AJ; Baker RE; Simpson MJ
    Phys Biol; 2015 Nov; 12(6):066010. PubMed ID: 26599468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: Distinguishing between short-time non-Fickian diffusion and long-time Fickian diffusion for a random walk on a crowded lattice.
    Ellery AJ; Baker RE; Simpson MJ
    J Chem Phys; 2016 May; 144(17):171104. PubMed ID: 27155618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles.
    Stefferson MW; Norris SL; Vernerey FJ; Betterton MD; Hough LE
    Phys Biol; 2017 Jun; 14(4):045008. PubMed ID: 28597848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing transport through a crowded environment with different obstacle sizes.
    Ellery AJ; Simpson MJ; McCue SW; Baker RE
    J Chem Phys; 2014 Feb; 140(5):054108. PubMed ID: 24511923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments.
    Bertrand T; Zhao Y; Bénichou O; Tailleur J; Voituriez R
    Phys Rev Lett; 2018 May; 120(19):198103. PubMed ID: 29799236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of composition of extended objects on percolation on a lattice.
    Kondrat G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011101. PubMed ID: 18763913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Percolation in a random environment.
    Juhász R; Iglói F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056113. PubMed ID: 12513562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analytical correlated random walk model and its application to understand subdiffusion in crowded environment.
    Hasnain S; Bandyopadhyay P
    J Chem Phys; 2015 Sep; 143(11):114104. PubMed ID: 26395684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ideal circle microswimmers in crowded media.
    Chepizhko O; Franosch T
    Soft Matter; 2019 Jan; 15(3):452-461. PubMed ID: 30574653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-universal tracer diffusion in crowded media of non-inert obstacles.
    Ghosh SK; Cherstvy AG; Metzler R
    Phys Chem Chem Phys; 2015 Jan; 17(3):1847-58. PubMed ID: 25474476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral diffusion of proteins in the plasma membrane: spatial tessellation and percolation theory.
    Sung BJ; Yethiraj A
    J Phys Chem B; 2008 Jan; 112(1):143-9. PubMed ID: 18069820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields.
    Harter T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026120. PubMed ID: 16196657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective diffusivity of microswimmers in a crowded environment.
    Brun-Cosme-Bruny M; Bertin E; Coasne B; Peyla P; Rafaï S
    J Chem Phys; 2019 Mar; 150(10):104901. PubMed ID: 30876342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.