BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28154922)

  • 1. Experimental measurement of breath exit velocity and expirated bloodstain patterns produced under different exhalation mechanisms.
    Geoghegan PH; Laffra AM; Hoogendorp NK; Taylor MC; Jermy MC
    Int J Legal Med; 2017 Sep; 131(5):1193-1201. PubMed ID: 28154922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterising the dynamics of expirated bloodstain pattern formation using high-speed digital video imaging.
    Donaldson AE; Walker NK; Lamont IL; Cordiner SJ; Taylor MC
    Int J Legal Med; 2011 Nov; 125(6):757-62. PubMed ID: 20668870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and computational investigation of the trajectories of blood drops ejected from the nose.
    Geoghegan PH; Spence CJ; Wilhelm J; Kabaliuk N; Taylor MC; Jermy MC
    Int J Legal Med; 2016 Mar; 130(2):563-8. PubMed ID: 25773915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deducing drop size and impact velocity from circular bloodstains.
    Hulse-Smith L; Mehdizadeh NZ; Chandra S
    J Forensic Sci; 2005 Jan; 50(1):54-63. PubMed ID: 15830997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance.
    de Castro TC; Taylor MC; Kieser JA; Carr DJ; Duncan W
    Forensic Sci Int; 2015 May; 250():98-109. PubMed ID: 25828382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental studies of bloodstain formation and characteristics.
    Adam CD
    Forensic Sci Int; 2012 Jun; 219(1-3):76-87. PubMed ID: 22227149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forensic implications of respiratory derived blood spatter distributions.
    Denison D; Porter A; Mills M; Schroter RC
    Forensic Sci Int; 2011 Jan; 204(1-3):144-55. PubMed ID: 21216361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing drip patterns in bloodstain pattern analysis: An investigation of the influence of droplet impact velocity and number of droplets on static pattern features.
    Boos K; Orr A; Illes M; Stotesbury T
    Forensic Sci Int; 2019 Aug; 301():55-66. PubMed ID: 31128409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of expirated bloodstain patterns by Calliphora vicina and Lucilia sericata (Diptera: Calliphoridae) through ingestion and deposition of artifacts.
    Striman B; Fujikawa A; Barksdale L; Carter DO
    J Forensic Sci; 2011 Jan; 56 Suppl 1():S123-7. PubMed ID: 21039518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCR-based detection of salivary bacteria as a marker of expirated blood.
    Power DA; Cordiner SJ; Kieser JA; Tompkins GR; Horswell J
    Sci Justice; 2010 Jun; 50(2):59-63. PubMed ID: 20470737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How far droplets can move in indoor environments--revisiting the Wells evaporation-falling curve.
    Xie X; Li Y; Chwang AT; Ho PL; Seto WH
    Indoor Air; 2007 Jun; 17(3):211-25. PubMed ID: 17542834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.
    de Castro TC; Carr DJ; Taylor MC; Kieser JA; Duncan W
    Forensic Sci Int; 2016 Sep; 266():488-501. PubMed ID: 27475631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using oral microbial DNA analysis to identify expirated bloodspatter.
    Donaldson AE; Taylor MC; Cordiner SJ; Lamont IL
    Int J Legal Med; 2010 Nov; 124(6):569-76. PubMed ID: 20162292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the initial velocity distribution of exhaled air from coughing and speaking.
    Kwon SB; Park J; Jang J; Cho Y; Park DS; Kim C; Bae GN; Jang A
    Chemosphere; 2012 Jun; 87(11):1260-4. PubMed ID: 22342283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of trigonometry in bloodstain analysis.
    Makovický P; Horáková P; Slavík P; Mošna F; Pokorná O
    Soud Lek; 2013 Apr; 58(2):20-5. PubMed ID: 23641723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact Spatter Bloodstain Patterns on Textiles.
    Wu J; Michielsen S; Baby R
    J Forensic Sci; 2019 May; 64(3):702-710. PubMed ID: 30380144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study of the Airflow Field and Fiber Motion in the Melt-Blowing Process.
    Wu W; Han W; Sun Y; Yi H; Wang X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on development of forensic blood substitute: Focusing on bloodstain pattern analysis.
    Lee SY; Seo YI; Moon BS; Kim JP; Goh JM; Park NK; Shin SH
    Forensic Sci Int; 2020 Nov; 316():110461. PubMed ID: 32862044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of two backward blood spatter models based on fluid dynamics for bloodstain pattern analysis.
    Comiskey PM; Yarin AL; Attinger D
    Forensic Sci Int; 2019 Aug; 301():299-305. PubMed ID: 31195251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.