BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28154974)

  • 41. Vascular cell transcriptomic changes to exercise training differ directionally along and between skeletal muscle arteriolar trees.
    Laughlin MH; Yang HT; Tharp DL; Rector RS; Padilla J; Bowles DK
    Microcirculation; 2017 Feb; 24(2):. PubMed ID: 27889934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physical conditioning decreases norepinephrine-induced vasoconstriction in rabbits. Possible roles of norepinephrine-evoked endothelium-derived relaxing factor.
    Chen HI; Li HT; Chen CC
    Circulation; 1994 Aug; 90(2):970-5. PubMed ID: 8044969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aging skeletal muscle: response to exercise.
    Cartee GD
    Exerc Sport Sci Rev; 1994; 22():91-120. PubMed ID: 7925554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exercise training-induced alterations in skeletal muscle oxidative and antioxidant enzyme activity in senescent rats.
    Hammeren J; Powers S; Lawler J; Criswell D; Martin D; Lowenthal D; Pollock M
    Int J Sports Med; 1992 Jul; 13(5):412-6. PubMed ID: 1521960
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle.
    Radák Z; Naito H; Kaneko T; Tahara S; Nakamoto H; Takahashi R; Cardozo-Pelaez F; Goto S
    Pflugers Arch; 2002 Nov; 445(2):273-8. PubMed ID: 12457248
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acute mechanoadaptation of vascular smooth muscle cells in response to continuous arteriolar vasoconstriction: implications for functional remodeling.
    Martinez-Lemus LA; Hill MA; Bolz SS; Pohl U; Meininger GA
    FASEB J; 2004 Apr; 18(6):708-10. PubMed ID: 14977879
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of treadmill training on the arteriolar and venular portions of capillary in soleus muscle of young and middle-aged rats.
    Suzuki J; Gao M; Batra S; Koyama T
    Acta Physiol Scand; 1997 Feb; 159(2):113-21. PubMed ID: 9055938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exercise training enhances adrenergic constriction and dilation in the rat spinotrapezius muscle.
    Lash JM
    J Appl Physiol (1985); 1998 Jul; 85(1):168-74. PubMed ID: 9655771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High dietary salt reduces the contribution of 20-HETE to arteriolar oxygen responsiveness in skeletal muscle.
    Marvar PJ; Falck JR; Boegehold MA
    Am J Physiol Heart Circ Physiol; 2007 Mar; 292(3):H1507-15. PubMed ID: 17114243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Initiating treadmill training in late middle age offers modest adaptations in Ca2+ handling but enhances oxidative damage in senescent rat skeletal muscle.
    Thomas MM; Vigna C; Betik AC; Tupling AR; Hepple RT
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1269-78. PubMed ID: 20200131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exercise training reverses unparallel downregulation of MaxiK channel α- and β1-subunit to enhance vascular function in aging mesenteric arteries.
    Shi L; Liu B; Zhang Y; Xue Z; Liu Y; Chen Y
    J Gerontol A Biol Sci Med Sci; 2014 Dec; 69(12):1462-73. PubMed ID: 24347614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flow-dependent dilation and myogenic constriction interact to establish the resistance of skeletal muscle arterioles.
    Sun D; Huang A; Koller A; Kaley G
    Microcirculation; 1995 Sep; 2(3):289-95. PubMed ID: 8748953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Uncoupling of changes in skeletal muscle beta-adrenergic receptor density and aerobic capacity during the aging process.
    Farrar RP; Monnin KA; Fordyce DE; Walters TJ
    Aging (Milano); 1997; 9(1-2):153-8. PubMed ID: 9177599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aging alters the contribution of nitric oxide to regional muscle hemodynamic control at rest and during exercise in rats.
    Hirai DM; Copp SW; Hageman KS; Poole DC; Musch TI
    J Appl Physiol (1985); 2011 Oct; 111(4):989-98. PubMed ID: 21757576
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmacological evidence for capacitative Ca(2+) entry in cannulated and pressurized skeletal muscle arterioles.
    Potocnik SJ; Hill MA
    Br J Pharmacol; 2001 Sep; 134(2):247-56. PubMed ID: 11564642
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of norepinephrine in hepatic gluconeogenesis: evidence of aging and training effects.
    Podolin DA; Gleeson TT; Mazzeo RS
    Am J Physiol; 1994 Nov; 267(5 Pt 1):E680-6. PubMed ID: 7977718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time-course changes in arteriolar and venular portions of capillary in young treadmill-trained rats.
    Suzuki J; Kobayashi T; Uruma T; Koyama T
    Acta Physiol Scand; 2001 Jan; 171(1):77-86. PubMed ID: 11350266
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short-term exercise training augments 2-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle.
    Jendzjowsky NG; DeLorey DS
    J Physiol; 2013 Oct; 591(20):5221-33. PubMed ID: 23940382
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of estradiol, angiotensin-converting enzyme inhibitor and exercise training on exercise capacity and skeletal muscle in old female rats.
    Guo Q; Minami N; Mori N; Nagasaka M; Ito O; Kurosawa H; Kanazawa M; Kohzuki M
    Clin Exp Hypertens; 2010 Jan; 32(2):76-83. PubMed ID: 20374181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of exercise training on responses of peripheral and visceral arteries in swine.
    McAllister RM; Kimani JK; Webster JL; Parker JL; Laughlin MH
    J Appl Physiol (1985); 1996 Jan; 80(1):216-25. PubMed ID: 8847306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.