BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28155122)

  • 1. Anisotropic Permeability of Trabecular Bone and its Relationship to Fabric and Architecture: A Computational Study.
    Kreipke TC; Niebur GL
    Ann Biomed Eng; 2017 Jun; 45(6):1543-1554. PubMed ID: 28155122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties.
    Kohles SS; Roberts JB
    J Biomech Eng; 2002 Oct; 124(5):521-6. PubMed ID: 12405594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of bone permeability considering the morphology of lacuno-canalicular porosity.
    Kameo Y; Adachi T; Sato N; Hojo M
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):240-8. PubMed ID: 20142108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.
    Nazemi SM; Cooper DM; Johnston JD
    Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.
    Moreno R; Smedby Ö; Pahr DH
    Biomech Model Mechanobiol; 2016 Aug; 15(4):831-44. PubMed ID: 26341838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of boundary conditions on yield properties of human femoral trabecular bone.
    Panyasantisuk J; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1043-53. PubMed ID: 26517986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations.
    Villette CC; Phillips ATM
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2077-2091. PubMed ID: 28795282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical stimuli of trabecular bone in osteoporosis: A numerical simulation by finite element analysis of microarchitecture.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2017 Feb; 66():19-27. PubMed ID: 27829192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of solid and fluid constitutive models of bone marrow during trabecular bone compression.
    Metzger TA; Niebur GL
    J Biomech; 2016 Oct; 49(14):3596-3601. PubMed ID: 27660172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures.
    Goda I; Ganghoffer JF
    J Mech Behav Biomed Mater; 2015 Nov; 51():99-118. PubMed ID: 26232945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the fabric and compliance tensors of cancellous bone due to trabecular surface remodeling, predicted by a digital image-based model.
    Tsubota K; Adachi T
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):187-92. PubMed ID: 15512762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison and verification of computational methods to determine the permeability of vertebral trabecular bone.
    Widmer RP; Ferguson SJ
    Proc Inst Mech Eng H; 2013 Jun; 227(6):617-28. PubMed ID: 23636744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure and shear stress in trabecular bone marrow during whole bone loading.
    Metzger TA; Schwaner SA; LaNeve AJ; Kreipke TC; Niebur GL
    J Biomech; 2015 Sep; 48(12):3035-43. PubMed ID: 26283413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.