BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28155643)

  • 1. Identification of recurrent combinatorial patterns of chromatin modifications at promoters across various tissue types.
    Meng N; Machiraju R; Huang K
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):534. PubMed ID: 28155643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining.
    Park SH; Lee SM; Kim YJ; Kim S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering common combinatorial histone modification patterns in the human genome.
    Linghu C; Zheng H; Zhang L; Zhang J
    Gene; 2013 Apr; 518(1):171-8. PubMed ID: 23235118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering.
    Ucar D; Hu Q; Tan K
    Nucleic Acids Res; 2011 May; 39(10):4063-75. PubMed ID: 21266477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression.
    Yan C; Boyd DD
    Mol Cell Biol; 2006 Sep; 26(17):6357-71. PubMed ID: 16914722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering cooperative relationships of chromatin modifications in human T cells based on a proposed closeness measure.
    Lv J; Qiao H; Liu H; Wu X; Zhu J; Su J; Wang F; Cui Y; Zhang Y
    PLoS One; 2010 Dec; 5(12):e14219. PubMed ID: 21151929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial patterns of histone acetylations and methylations in the human genome.
    Wang Z; Zang C; Rosenfeld JA; Schones DE; Barski A; Cuddapah S; Cui K; Roh TY; Peng W; Zhang MQ; Zhao K
    Nat Genet; 2008 Jul; 40(7):897-903. PubMed ID: 18552846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of regulatory elements in mammalian genomes using chromatin signatures.
    Won KJ; Chepelev I; Ren B; Wang W
    BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 5' regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells.
    Szenthe K; Koroknai A; Banati F; Bathori Z; Lozsa R; Burgyan J; Wolf H; Salamon D; Nagy K; Niller HH; Minarovits J
    Biochem Biophys Res Commun; 2013 Apr; 433(4):489-95. PubMed ID: 23528241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin modifications and genomic contexts linked to dynamic DNA methylation patterns across human cell types.
    Yan H; Zhang D; Liu H; Wei Y; Lv J; Wang F; Zhang C; Wu Q; Su J; Zhang Y
    Sci Rep; 2015 Feb; 5():8410. PubMed ID: 25673498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity.
    Sammons MA; Zhu J; Drake AM; Berger SL
    Genome Res; 2015 Feb; 25(2):179-88. PubMed ID: 25391375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution profiling of histone methylations in the human genome.
    Barski A; Cuddapah S; Cui K; Roh TY; Schones DE; Wang Z; Wei G; Chepelev I; Zhao K
    Cell; 2007 May; 129(4):823-37. PubMed ID: 17512414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of histone modifications across mammalian genomes: implications for 'epigenetic' marking.
    Lee BM; Mahadevan LC
    J Cell Biochem; 2009 Sep; 108(1):22-34. PubMed ID: 19623574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.
    Heintzman ND; Stuart RK; Hon G; Fu Y; Ching CW; Hawkins RD; Barrera LO; Van Calcar S; Qu C; Ching KA; Wang W; Weng Z; Green RD; Crawford GE; Ren B
    Nat Genet; 2007 Mar; 39(3):311-8. PubMed ID: 17277777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone modifications in zebrafish development.
    Cunliffe VT
    Methods Cell Biol; 2016; 135():361-85. PubMed ID: 27443936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function.
    Pick H; Kilic S; Fierz B
    Biochim Biophys Acta; 2014 Aug; 1839(8):644-56. PubMed ID: 24768924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling epigenetic regulation of gene expression in 12 human cell types reveals combinatorial patterns of cell-type-specific genes.
    Lu Y; Qu W; Min B; Liu Z; Chen C; Zhang C
    IET Syst Biol; 2014 Jun; 8(3):104-15. PubMed ID: 25014377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project.
    Siggens L; Ekwall K
    J Intern Med; 2014 Sep; 276(3):201-14. PubMed ID: 24605849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage.
    Szutorisz H; Canzonetta C; Georgiou A; Chow CM; Tora L; Dillon N
    Mol Cell Biol; 2005 Mar; 25(5):1804-20. PubMed ID: 15713636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.