These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 28155643)
1. Identification of recurrent combinatorial patterns of chromatin modifications at promoters across various tissue types. Meng N; Machiraju R; Huang K BMC Bioinformatics; 2016 Dec; 17(Suppl 17):534. PubMed ID: 28155643 [TBL] [Abstract][Full Text] [Related]
2. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining. Park SH; Lee SM; Kim YJ; Kim S BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934 [TBL] [Abstract][Full Text] [Related]
3. Discovering common combinatorial histone modification patterns in the human genome. Linghu C; Zheng H; Zhang L; Zhang J Gene; 2013 Apr; 518(1):171-8. PubMed ID: 23235118 [TBL] [Abstract][Full Text] [Related]
4. Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering. Ucar D; Hu Q; Tan K Nucleic Acids Res; 2011 May; 39(10):4063-75. PubMed ID: 21266477 [TBL] [Abstract][Full Text] [Related]
5. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression. Yan C; Boyd DD Mol Cell Biol; 2006 Sep; 26(17):6357-71. PubMed ID: 16914722 [TBL] [Abstract][Full Text] [Related]
6. Discovering cooperative relationships of chromatin modifications in human T cells based on a proposed closeness measure. Lv J; Qiao H; Liu H; Wu X; Zhu J; Su J; Wang F; Cui Y; Zhang Y PLoS One; 2010 Dec; 5(12):e14219. PubMed ID: 21151929 [TBL] [Abstract][Full Text] [Related]
7. Combinatorial patterns of histone acetylations and methylations in the human genome. Wang Z; Zang C; Rosenfeld JA; Schones DE; Barski A; Cuddapah S; Cui K; Roh TY; Peng W; Zhang MQ; Zhao K Nat Genet; 2008 Jul; 40(7):897-903. PubMed ID: 18552846 [TBL] [Abstract][Full Text] [Related]
8. Prediction of regulatory elements in mammalian genomes using chromatin signatures. Won KJ; Chepelev I; Ren B; Wang W BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206 [TBL] [Abstract][Full Text] [Related]
9. The 5' regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells. Szenthe K; Koroknai A; Banati F; Bathori Z; Lozsa R; Burgyan J; Wolf H; Salamon D; Nagy K; Niller HH; Minarovits J Biochem Biophys Res Commun; 2013 Apr; 433(4):489-95. PubMed ID: 23528241 [TBL] [Abstract][Full Text] [Related]
10. Chromatin modifications and genomic contexts linked to dynamic DNA methylation patterns across human cell types. Yan H; Zhang D; Liu H; Wei Y; Lv J; Wang F; Zhang C; Wu Q; Su J; Zhang Y Sci Rep; 2015 Feb; 5():8410. PubMed ID: 25673498 [TBL] [Abstract][Full Text] [Related]
11. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity. Sammons MA; Zhu J; Drake AM; Berger SL Genome Res; 2015 Feb; 25(2):179-88. PubMed ID: 25391375 [TBL] [Abstract][Full Text] [Related]
12. High-resolution profiling of histone methylations in the human genome. Barski A; Cuddapah S; Cui K; Roh TY; Schones DE; Wang Z; Wei G; Chepelev I; Zhao K Cell; 2007 May; 129(4):823-37. PubMed ID: 17512414 [TBL] [Abstract][Full Text] [Related]
13. Stability of histone modifications across mammalian genomes: implications for 'epigenetic' marking. Lee BM; Mahadevan LC J Cell Biochem; 2009 Sep; 108(1):22-34. PubMed ID: 19623574 [TBL] [Abstract][Full Text] [Related]
14. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. Hon G; Ren B; Wang W PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605 [TBL] [Abstract][Full Text] [Related]
15. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Heintzman ND; Stuart RK; Hon G; Fu Y; Ching CW; Hawkins RD; Barrera LO; Van Calcar S; Qu C; Ching KA; Wang W; Weng Z; Green RD; Crawford GE; Ren B Nat Genet; 2007 Mar; 39(3):311-8. PubMed ID: 17277777 [TBL] [Abstract][Full Text] [Related]
17. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. Pick H; Kilic S; Fierz B Biochim Biophys Acta; 2014 Aug; 1839(8):644-56. PubMed ID: 24768924 [TBL] [Abstract][Full Text] [Related]
18. Modelling epigenetic regulation of gene expression in 12 human cell types reveals combinatorial patterns of cell-type-specific genes. Lu Y; Qu W; Min B; Liu Z; Chen C; Zhang C IET Syst Biol; 2014 Jun; 8(3):104-15. PubMed ID: 25014377 [TBL] [Abstract][Full Text] [Related]
19. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. Siggens L; Ekwall K J Intern Med; 2014 Sep; 276(3):201-14. PubMed ID: 24605849 [TBL] [Abstract][Full Text] [Related]
20. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Szutorisz H; Canzonetta C; Georgiou A; Chow CM; Tora L; Dillon N Mol Cell Biol; 2005 Mar; 25(5):1804-20. PubMed ID: 15713636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]