These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 28155657)
1. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data. Hu Y; Hase T; Li HP; Prabhakar S; Kitano H; Ng SK; Ghosh S; Wee LJ BMC Genomics; 2016 Dec; 17(Suppl 13):1025. PubMed ID: 28155657 [TBL] [Abstract][Full Text] [Related]
2. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data. Ng GYL; Tan SC; Ong CS PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458 [TBL] [Abstract][Full Text] [Related]
3. Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq datasets and machine learning. Gupta R; Kleinjans J; Caiment F BMC Cancer; 2021 Aug; 21(1):962. PubMed ID: 34445986 [TBL] [Abstract][Full Text] [Related]
4. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma. Li MX; Sun XM; Cheng WG; Ruan HJ; Liu K; Chen P; Xu HJ; Gao SG; Feng XS; Qi YJ BMC Cancer; 2021 Aug; 21(1):906. PubMed ID: 34372798 [TBL] [Abstract][Full Text] [Related]
5. Novel candidate genes for environmental stresses response in Synechocystis sp. PCC 6803 revealed by machine learning algorithms. Karimi-Fard A; Saidi A; TohidFar M; Emami SN Braz J Microbiol; 2024 Jun; 55(2):1219-1229. PubMed ID: 38705959 [TBL] [Abstract][Full Text] [Related]
6. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods. Li L; Ching WK; Liu ZP Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551 [TBL] [Abstract][Full Text] [Related]
7. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
8. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. Zhang Y; Deng Q; Liang W; Zou X Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989 [TBL] [Abstract][Full Text] [Related]
9. Identification of biomarkers that distinguish chemical contaminants based on gene expression profiles. Wei X; Ai J; Deng Y; Guan X; Johnson DR; Ang CY; Zhang C; Perkins EJ BMC Genomics; 2014 Mar; 15():248. PubMed ID: 24678894 [TBL] [Abstract][Full Text] [Related]
10. Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning. Li S; Chen B; Chen H; Hua Z; Shao Y; Yin H; Wang J PLoS One; 2021; 16(9):e0257343. PubMed ID: 34555052 [TBL] [Abstract][Full Text] [Related]
11. Ensemble Feature Learning of Genomic Data Using Support Vector Machine. Anaissi A; Goyal M; Catchpoole DR; Braytee A; Kennedy PJ PLoS One; 2016; 11(6):e0157330. PubMed ID: 27304923 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data. Huang Y; Zhang P Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33611343 [TBL] [Abstract][Full Text] [Related]
13. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
14. Identification of TYR, TYRP1, DCT and LARP7 as related biomarkers and immune infiltration characteristics of vitiligo via comprehensive strategies. Zhang J; Yu R; Guo X; Zou Y; Chen S; Zhou K; Chen Y; Li Y; Gao S; Wu Y Bioengineered; 2021 Dec; 12(1):2214-2227. PubMed ID: 34107850 [TBL] [Abstract][Full Text] [Related]
15. Machine learning random forest for predicting oncosomatic variant NGS analysis. Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture. Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887 [TBL] [Abstract][Full Text] [Related]
18. Cancer classification of single-cell gene expression data by neural network. Kim BH; Yu K; Lee PCW Bioinformatics; 2020 Mar; 36(5):1360-1366. PubMed ID: 31603465 [TBL] [Abstract][Full Text] [Related]
19. Recursive Support Vector Machine Biomarker Selection for Alzheimer's Disease. Zhang F; Petersen M; Johnson L; Hall J; O'Bryant SE J Alzheimers Dis; 2021; 79(4):1691-1700. PubMed ID: 33492292 [TBL] [Abstract][Full Text] [Related]
20. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms. Chen L; Pan X; Guo W; Gan Z; Zhang YH; Niu Z; Huang T; Cai YD Genomics; 2020 May; 112(3):2524-2534. PubMed ID: 32045671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]