These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28155688)

  • 41. Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons.
    van Tol AF; Roschger A; Repp F; Chen J; Roschger P; Berzlanovich A; Gruber GM; Fratzl P; Weinkamer R
    Biomech Model Mechanobiol; 2020 Jun; 19(3):823-840. PubMed ID: 31782029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements.
    Qin YX; Lin W; Rubin C
    Ann Biomed Eng; 2002 May; 30(5):693-702. PubMed ID: 12108843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia.
    Vaughan TJ; Mullen CA; Verbruggen SW; McNamara LM
    Biomech Model Mechanobiol; 2015 Aug; 14(4):703-18. PubMed ID: 25399300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of bone permeability considering the morphology of lacuno-canalicular porosity.
    Kameo Y; Adachi T; Sato N; Hojo M
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):240-8. PubMed ID: 20142108
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone.
    Fornells P; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1687-98. PubMed ID: 17616819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Secondary osteon size and collagen/lamellar organization ("osteon morphotypes") are not coupled, but potentially adapt independently for local strain mode or magnitude.
    Skedros JG; Keenan KE; Williams TJ; Kiser CJ
    J Struct Biol; 2013 Feb; 181(2):95-107. PubMed ID: 23123271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An estimate of anisotropic poroelastic constants of an osteon.
    Yoon YJ; Cowin SC
    Biomech Model Mechanobiol; 2008 Feb; 7(1):13-26. PubMed ID: 17297632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On bone adaptation due to venous stasis.
    Wang L; Fritton SP; Weinbaum S; Cowin SC
    J Biomech; 2003 Oct; 36(10):1439-51. PubMed ID: 14499293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the mechanical characterization of compact bone structure using the homogenization theory.
    Aoubiza B; Crolet JM; Meunier A
    J Biomech; 1996 Dec; 29(12):1539-47. PubMed ID: 8945652
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Responses of bone cells to biomechanical forces in vitro.
    Burger EH; Klein-Nulen J
    Adv Dent Res; 1999 Jun; 13():93-8. PubMed ID: 11276754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An elastic compound tube model for a single osteon.
    Braidotti P; Branca FP; Sciubba E; Stagni L
    J Biomech; 1995 Apr; 28(4):439-44. PubMed ID: 7738052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model.
    Kamioka H; Kameo Y; Imai Y; Bakker AD; Bacabac RG; Yamada N; Takaoka A; Yamashiro T; Adachi T; Klein-Nulend J
    Integr Biol (Camb); 2012 Oct; 4(10):1198-206. PubMed ID: 22858651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.
    Wang L; Fritton SP; Cowin SC; Weinbaum S
    J Biomech; 1999 Jul; 32(7):663-72. PubMed ID: 10400353
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].
    Rogala P; Uklejewski R; Stryła W
    Chir Narzadow Ruchu Ortop Pol; 2002; 67(3):309-16. PubMed ID: 12238403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computer model of non-Newtonian canalicular fluid flow in lacunar-canalicular system of bone tissue.
    Kumar R
    Comput Methods Biomech Biomed Engin; 2024 Feb; ():1-15. PubMed ID: 38372236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Canalicular fluid flow induced by bending of a long bone.
    Srinivasan S; Gross TS
    Med Eng Phys; 2000 Mar; 22(2):127-33. PubMed ID: 10854966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The responses of osteoblasts to fluid shear stress depend on substrate chemistries.
    Li Y; Luo Y; Huang K; Xing J; Xie Z; Lin M; Yang L; Wang Y
    Arch Biochem Biophys; 2013 Nov; 539(1):38-50. PubMed ID: 24051006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lactation alters fluid flow and solute transport in maternal skeleton: A multiscale modeling study on the effects of microstructural changes and loading frequency.
    Lai X; Chung R; Li Y; Liu XS; Wang L
    Bone; 2021 Oct; 151():116033. PubMed ID: 34102350
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Delineating bone's interstitial fluid pathway in vivo.
    Wang L; Ciani C; Doty SB; Fritton SP
    Bone; 2004 Mar; 34(3):499-509. PubMed ID: 15003797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A discrete model for streaming potentials in a single osteon.
    Petrov N; Pollack S; Blagoeva R
    J Biomech; 1989; 22(6-7):517-21. PubMed ID: 2808436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.