BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 28155705)

  • 61. A linearized and incompressible constitutive model for arteries.
    Liu Y; Zhang W; Wang C; Kassab GS
    J Theor Biol; 2011 Oct; 286(1):85-91. PubMed ID: 21605567
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris investigated using uniaxial tensile tests.
    Li T; Qin X; Liu Z; Zhang H; Li L
    Acta Bioeng Biomech; 2023; 25(2):85-92. PubMed ID: 38314516
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effects of cyclic tensile and stress-relaxation tests on porcine skin.
    Remache D; Caliez M; Gratton M; Dos Santos S
    J Mech Behav Biomed Mater; 2018 Jan; 77():242-249. PubMed ID: 28954243
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur.
    Wirtz DC; Schiffers N; Pandorf T; Radermacher K; Weichert D; Forst R
    J Biomech; 2000 Oct; 33(10):1325-30. PubMed ID: 10899344
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Time-course of the human thoracic aorta ageing process assessed using uniaxial mechanical testing and constitutive modelling.
    Giudici A; Li Y; Yasmin ; Cleary S; Connolly K; McEniery C; Wilkinson IB; Khir AW
    J Mech Behav Biomed Mater; 2022 Oct; 134():105339. PubMed ID: 35868063
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Understanding the viscoelastic behavior of arterial elastin in glucose via relaxation time distribution spectrum.
    Wang Y; Li H; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():634-641. PubMed ID: 29101895
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms.
    Akseli I; Hancock BC; Cetinkaya C
    Int J Pharm; 2009 Jul; 377(1-2):35-44. PubMed ID: 19426791
    [TBL] [Abstract][Full Text] [Related]  

  • 68. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biaxial tensile testing system for measuring mechanical properties of both sides of biological tissues.
    Takada J; Hamada K; Zhu X; Tsuboko Y; Iwasaki K
    J Mech Behav Biomed Mater; 2023 Oct; 146():106028. PubMed ID: 37531771
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The relationship between Shore hardness of elastomeric dental materials and Young's modulus.
    Meththananda IM; Parker S; Patel MP; Braden M
    Dent Mater; 2009 Aug; 25(8):956-9. PubMed ID: 19286248
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
    Abdel-Wahab AA; Alam K; Silberschmidt VV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of UV-light on the uniaxial tensile properties and structure of uncoated and TiO2 coated Bombyx mori silk fibers.
    Aksakal B; Koç K; Yargı Ö; Tsobkallo K
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():658-65. PubMed ID: 25746557
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A new method to determine rate-dependent material parameters of corneal extracellular matrix.
    Hatami-Marbini H; Etebu E
    Ann Biomed Eng; 2013 Nov; 41(11):2399-408. PubMed ID: 23872935
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates.
    Trotta A; Ní Annaidh A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103381. PubMed ID: 31430703
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation.
    Daphalapurkar NP; Dai C; Gan RZ; Lu H
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):82-92. PubMed ID: 19627811
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The mechanical properties of fin whale arteries are explained by novel connective tissue designs.
    Gosline JM; Shadwick RE
    J Exp Biol; 1996 Apr; 199(Pt 4):985-97. PubMed ID: 8788091
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Strain rate and anisotropy effects on the tensile failure characteristics of human skin.
    Ottenio M; Tran D; Ní Annaidh A; Gilchrist MD; Bruyère K
    J Mech Behav Biomed Mater; 2015 Jan; 41():241-50. PubMed ID: 25455608
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dynamic mechanical properties of atherosclerotic aorta. A correlation between the cholesterol ester content and the viscoelastic properties of atherosclerotic aorta.
    Pynadath TI; Mukherjee DP
    Atherosclerosis; 1977 Mar; 26(3):311-8. PubMed ID: 849376
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling.
    Schriefl AJ; Schmidt T; Balzani D; Sommer G; Holzapfel GA
    Acta Biomater; 2015 Apr; 17():125-36. PubMed ID: 25623592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.