These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 28155705)

  • 81. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Modelling and validation of the non-linear elastic stress-strain behaviour of multi-layer silicone composites.
    Ahmad M; Pelorson X; Guasch O; Fernández AI; Van Hirtum A
    J Mech Behav Biomed Mater; 2023 Mar; 139():105690. PubMed ID: 36716579
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Stomach stress and strain depend on location, direction and the layered structure.
    Zhao J; Liao D; Chen P; Kunwald P; Gregersen H
    J Biomech; 2008 Dec; 41(16):3441-7. PubMed ID: 19004444
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.
    Yang T; Chui CK; Yu RQ; Qin J; Chang SK
    Int J Comput Assist Radiol Surg; 2011 Nov; 6(6):829-38. PubMed ID: 21487834
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta.
    Horný L; Netušil M; Voňavková T
    Biomech Model Mechanobiol; 2014 Aug; 13(4):783-99. PubMed ID: 24136338
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
    Holzapfel GA; Sommer G; Gasser CT; Regitnig P
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2048-58. PubMed ID: 16006541
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Measurement of the axial and circumferential mechanical properties of rat skin tissue at different anatomical locations.
    Karimi A; Haghighatnama M; Navidbakhsh M; Haghi AM
    Biomed Tech (Berl); 2015 Apr; 60(2):115-22. PubMed ID: 25389978
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta.
    Xiong J; Wang SM; Zhou W; Wu JG
    J Vasc Surg; 2008 Jul; 48(1):189-95. PubMed ID: 18406563
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Uniaxial and biaxial tensile stress-stretch response of human linea alba.
    Cooney GM; Lake SP; Thompson DM; Castile RM; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2016 Oct; 63():134-140. PubMed ID: 27367944
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Influence of selective digestion of elastin and collagen on mechanical properties of human aortas.
    Kobielarz M; Chwiłkowska A; Turek A; Maksymowicz K; Marciniak M
    Acta Bioeng Biomech; 2015; 17(2):55-62. PubMed ID: 26415712
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Neutral axis location in bending and Young's modulus of different layers of arterial wall.
    Yu Q; Zhou J; Fung YC
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H52-60. PubMed ID: 8342664
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Young's modulus of collagen at slow displacement rates.
    Lopez-Garcia MD; Beebe DJ; Crone WC
    Biomed Mater Eng; 2010; 20(6):361-9. PubMed ID: 21263182
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Mechanical properties of the airway tree: heterogeneous and anisotropic pseudoelastic and viscoelastic tissue responses.
    Eskandari M; Arvayo AL; Levenston ME
    J Appl Physiol (1985); 2018 Sep; 125(3):878-888. PubMed ID: 29745796
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Stress relaxation and stress-strain characteristics of porcine amniotic membrane.
    Kikuchi M; Feng Z; Kosawada T; Sato D; Nakamura T; Umezu M
    Biomed Mater Eng; 2016; 27(6):603-611. PubMed ID: 28234244
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Uniaxial mechanical stretch properties correlated with three-dimensional microstructure of human dermal skin.
    Zhou M; González PJ; Van Haasterecht L; Soylu A; Mihailovski M; Van Zuijlen P; Groot ML
    Biomech Model Mechanobiol; 2024 Jun; 23(3):911-925. PubMed ID: 38324073
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bladder wall biomechanics: A comprehensive study on fresh porcine urinary bladder.
    Jokandan MS; Ajalloueian F; Edinger M; Stubbe PR; Baldursdottir S; Chronakis IS
    J Mech Behav Biomed Mater; 2018 Mar; 79():92-103. PubMed ID: 29287227
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A study on the mechanical properties of beagle femoral head using the digital speckle correlation method.
    Wang Q; Xie H; Tang P; Yao Q; Huang P; Chen P; Huang F
    Med Eng Phys; 2009 Dec; 31(10):1228-34. PubMed ID: 19713145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.