These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 28155916)
1. Dual origins of the intracellular circadian calcium rhythm in the suprachiasmatic nucleus. Enoki R; Ono D; Kuroda S; Honma S; Honma KI Sci Rep; 2017 Feb; 7():41733. PubMed ID: 28155916 [TBL] [Abstract][Full Text] [Related]
2. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. Noguchi T; Leise TL; Kingsbury NJ; Diemer T; Wang LL; Henson MA; Welsh DK eNeuro; 2017; 4(4):. PubMed ID: 28828400 [TBL] [Abstract][Full Text] [Related]
3. Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice. Noguchi T; Lo K; Diemer T; Welsh DK Neurosci Lett; 2016 Apr; 619():49-53. PubMed ID: 26930624 [TBL] [Abstract][Full Text] [Related]
4. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Ono D; Honma S; Honma K Nat Commun; 2013; 4():1666. PubMed ID: 23575670 [TBL] [Abstract][Full Text] [Related]
5. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms. Ono D; Honma S; Honma K Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367 [TBL] [Abstract][Full Text] [Related]
6. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus. Granados-Fuentes D; Hermanstyne TO; Carrasquillo Y; Nerbonne JM; Herzog ED J Biol Rhythms; 2015 Oct; 30(5):396-407. PubMed ID: 26152125 [TBL] [Abstract][Full Text] [Related]
7. Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons. Smyllie NJ; Bagnall J; Koch AA; Niranjan D; Polidarova L; Chesham JE; Chin JW; Partch CL; Loudon ASI; Hastings MH Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046033 [TBL] [Abstract][Full Text] [Related]
8. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling. Evans JA; Pan H; Liu AC; Welsh DK J Biol Rhythms; 2012 Dec; 27(6):443-52. PubMed ID: 23223370 [TBL] [Abstract][Full Text] [Related]
9. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators. Ruan GX; Gamble KL; Risner ML; Young LA; McMahon DG PLoS One; 2012; 7(6):e38985. PubMed ID: 22701739 [TBL] [Abstract][Full Text] [Related]
10. Cryptochrome-dependent circadian periods in the arcuate nucleus. Uchida H; Nakamura TJ; Takasu NN; Todo T; Sakai T; Nakamura W Neurosci Lett; 2016 Jan; 610():123-8. PubMed ID: 26542738 [TBL] [Abstract][Full Text] [Related]
11. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524 [TBL] [Abstract][Full Text] [Related]
12. Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes. Mendoza J; Albrecht U; Challet E Genes Brain Behav; 2010 Jul; 9(5):467-77. PubMed ID: 20180860 [TBL] [Abstract][Full Text] [Related]
13. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN. Ono D; Honma KI; Schmal C; Takumi T; Kawamoto T; Fujimoto K; Kato Y; Honma S Sci Rep; 2021 Sep; 11(1):19240. PubMed ID: 34584158 [TBL] [Abstract][Full Text] [Related]
14. Fibroblast circadian rhythms of PER2 expression depend on membrane potential and intracellular calcium. Noguchi T; Wang CW; Pan H; Welsh DK Chronobiol Int; 2012 Jul; 29(6):653-64. PubMed ID: 22734566 [TBL] [Abstract][Full Text] [Related]
15. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624 [TBL] [Abstract][Full Text] [Related]
16. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. Ono D; Honma S; Honma K Sci Adv; 2016 Sep; 2(9):e1600960. PubMed ID: 27626074 [TBL] [Abstract][Full Text] [Related]
17. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus. Carmona-Alcocer V; Abel JH; Sun TC; Petzold LR; Doyle FJ; Simms CL; Herzog ED J Neurosci; 2018 Feb; 38(6):1326-1334. PubMed ID: 29054877 [TBL] [Abstract][Full Text] [Related]
18. Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Mei L; Fan Y; Lv X; Welsh DK; Zhan C; Zhang EE Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4276-4281. PubMed ID: 29610316 [TBL] [Abstract][Full Text] [Related]
19. Dissociation of Ono D; Honma S; Nakajima Y; Kuroda S; Enoki R; Honma KI Proc Natl Acad Sci U S A; 2017 May; 114(18):E3699-E3708. PubMed ID: 28416676 [TBL] [Abstract][Full Text] [Related]