These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 28155937)
1. Controlled aggregation and cell uptake of thermoresponsive polyoxazoline-grafted superparamagnetic iron oxide nanoparticles. Kurzhals S; Gal N; Zirbs R; Reimhult E Nanoscale; 2017 Feb; 9(8):2793-2805. PubMed ID: 28155937 [TBL] [Abstract][Full Text] [Related]
2. Aggregation of thermoresponsive core-shell nanoparticles: Influence of particle concentration, dispersant molecular weight and grafting. Kurzhals S; Gal N; Zirbs R; Reimhult E J Colloid Interface Sci; 2017 Aug; 500():321-332. PubMed ID: 28412639 [TBL] [Abstract][Full Text] [Related]
3. Design Principles for Thermoresponsive Core-Shell Nanoparticles: Controlling Thermal Transitions by Brush Morphology. Reimhult E; Schroffenegger M; Lassenberger A Langmuir; 2019 Jun; 35(22):7092-7104. PubMed ID: 31035760 [TBL] [Abstract][Full Text] [Related]
4. The Role of Chain Molecular Weight and Hofmeister Series Ions in Thermal Aggregation of Poly(2-Isopropyl-2-Oxazoline) Grafted Nanoparticles. Schroffenegger M; Zirbs R; Kurzhals S; Reimhult E Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966486 [TBL] [Abstract][Full Text] [Related]
5. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers. Kim S; Lee K; Cha C J Biomater Sci Polym Ed; 2016 Dec; 27(17):1698-1711. PubMed ID: 27573586 [TBL] [Abstract][Full Text] [Related]
6. Thermoresponsive Core-Shell Nanoparticles: Does Core Size Matter? Schroffenegger M; Reimhult E Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205481 [TBL] [Abstract][Full Text] [Related]
7. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. Dutta S; Parida S; Maiti C; Banerjee R; Mandal M; Dhara D J Colloid Interface Sci; 2016 Apr; 467():70-80. PubMed ID: 26773613 [TBL] [Abstract][Full Text] [Related]
8. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation. Gillich T; Acikgöz C; Isa L; Schlüter AD; Spencer ND; Textor M ACS Nano; 2013 Jan; 7(1):316-29. PubMed ID: 23214719 [TBL] [Abstract][Full Text] [Related]
9. Thermoresponsive Nanoparticles with Cyclic-Polymer-Grafted Shells Are More Stable than with Linear-Polymer-Grafted Shells: Effect of Polymer Topology, Molecular Weight, and Core Size. Willinger M; Reimhult E J Phys Chem B; 2021 Jul; 125(25):7009-7023. PubMed ID: 34156854 [TBL] [Abstract][Full Text] [Related]
10. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles. Kurzhals S; Zirbs R; Reimhult E ACS Appl Mater Interfaces; 2015 Sep; 7(34):19342-52. PubMed ID: 26270412 [TBL] [Abstract][Full Text] [Related]
12. Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry. Gal N; Schroffenegger M; Reimhult E J Phys Chem B; 2018 Jun; 122(22):5820-5834. PubMed ID: 29726682 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. Peralta ME; Jadhav SA; Magnacca G; Scalarone D; Mártire DO; Parolo ME; Carlos L J Colloid Interface Sci; 2019 May; 544():198-205. PubMed ID: 30844568 [TBL] [Abstract][Full Text] [Related]
14. Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. Zoppe JO; Osterberg M; Venditti RA; Laine J; Rojas OJ Biomacromolecules; 2011 Jul; 12(7):2788-96. PubMed ID: 21648448 [TBL] [Abstract][Full Text] [Related]
15. Double-stimuli-responsive spherical polymer brushes with a poly(ionic liquid) core and a thermoresponsive shell. Men Y; Drechsler M; Yuan J Macromol Rapid Commun; 2013 Nov; 34(21):1721-7. PubMed ID: 24186465 [TBL] [Abstract][Full Text] [Related]
16. Functionalization of strongly interacting magnetic nanocubes with (thermo)responsive coating and their application in hyperthermia and heat-triggered drug delivery. Kakwere H; Leal MP; Materia ME; Curcio A; Guardia P; Niculaes D; Marotta R; Falqui A; Pellegrino T ACS Appl Mater Interfaces; 2015 May; 7(19):10132-45. PubMed ID: 25840122 [TBL] [Abstract][Full Text] [Related]
17. Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material. Wang B; Sandre O; Wang K; Shi H; Xiong K; Huang YB; Wu T; Yan M; Courtois J Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109920. PubMed ID: 31500039 [TBL] [Abstract][Full Text] [Related]
18. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion. Psarra E; König U; Ueda Y; Bellmann C; Janke A; Bittrich E; Eichhorn KJ; Uhlmann P ACS Appl Mater Interfaces; 2015 Jun; 7(23):12516-29. PubMed ID: 25651080 [TBL] [Abstract][Full Text] [Related]
19. The Importance of Excess Poly(N-isopropylacrylamide) for the Aggregation of Poly(N-isopropylacrylamide)-Coated Gold Nanoparticles. Jones ST; Walsh-Korb Z; Barrow SJ; Henderson SL; del Barrio J; Scherman OA ACS Nano; 2016 Mar; 10(3):3158-65. PubMed ID: 26788966 [TBL] [Abstract][Full Text] [Related]
20. Influence of Grafted Block Copolymer Structure on Thermoresponsiveness of Superparamagnetic Core-Shell Nanoparticles. Kurzhals S; Schroffenegger M; Gal N; Zirbs R; Reimhult E Biomacromolecules; 2018 May; 19(5):1435-1444. PubMed ID: 29161516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]