These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 28156)

  • 1. [Contraction--relaxation of glycerinated muscle fibers induced by a pH change in the presence of parvalbumins].
    Burkhanov SA; Chapliĭ MF; Permiakov EA; Burshteĭn EA
    Biofizika; 1978; 23(4):734-5. PubMed ID: 28156
    [No Abstract]   [Full Text] [Related]  

  • 2. [Functional role of parvalbumins in regulating Ca2+ in the contraction--relaxation cycle of vertebrate skeletal muscles].
    Burshteĭn EA; Burkhanov SA; Permiakov EA
    Biofizika; 1977; 22(5):946-8. PubMed ID: 20987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium sensitivity of glycerinated muscle fiber and fibrils.
    Hotta K
    Nagoya Med J; 1970 Nov; 16(2):125-32. PubMed ID: 4250524
    [No Abstract]   [Full Text] [Related]  

  • 4. Relaxation of glycerinated muscle fibers and clearing response of myosin B in magnesium-inosine triphosphate medium.
    Ghani QP; Watanabe S
    J Biochem; 1971 Apr; 69(4):739-52. PubMed ID: 4995444
    [No Abstract]   [Full Text] [Related]  

  • 5. [Structural changes in contractile proteins of muscle fibers studied by polarization ultraviolet fluorescence microscopy. X. The effect of ATP, Ca2+, pH change and ionic strength of the washing solution on the structural state of thick filaments].
    Borovikov IuS; Lebedeva NI
    Tsitologiia; 1987 Nov; 29(11):1270-4. PubMed ID: 3438932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium and sodium ions in the glycerinated skeletal muscle. Distribution changes induced by adenosine triphosphate and nondissociable anesthetic substances.
    Dragomir CT; Barbier A; Ungureanu D; Ionescu V; Pausescu E; Chirvasie R; Ghitescu D; Filipescu G
    Physiol Chem Phys; 1975; 7(4):287-308. PubMed ID: 1187818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Amplitude of the tension developed by glycerinated muscle fibers during rigidity depends on the nature of the structural reorganizations in F-actin induced by formation of the actomyosin complex].
    Borovikov IuS; Lebedeva NN
    Tsitologiia; 1987 Oct; 29(10):1192-5. PubMed ID: 3433355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational dynamics of proteins in glycerinated muscle fibres.
    Belágyi J; Gróf P
    Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):229-46. PubMed ID: 6100665
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on conformational changes in F-actin of glycerinated muscle fibers during relaxation by means of polarized ultraviolet fluorescence microscopy.
    Borovikov YS; Chernogriadskaia NA
    Microsc Acta; 1979 May; 81(5):383-92. PubMed ID: 470613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of phallotoxins on the mechanism of Ca2+-activation of glycerinated fibers of the rabbit psoas muscle].
    Son'kin BIa; Bukatina AE; Viland T
    Biofizika; 1983; 28(5):843-8. PubMed ID: 6639966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Reduced sensitivity of glycerinated rabbit m.psoas fibers to diprotonated vanadate during decrease in pH].
    Bukatina AE; Kreslavskaia NB; Son'kin BIa
    Biofizika; 1990; 35(2):317-20. PubMed ID: 2164424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Polarized fluorescence of stained muscle fibers. IV. Change in the orientation of acridine orange in glycerinated fibers under the effects of ATP].
    Kaulin AB; Gol'fand KA
    Tsitologiia; 1970 Feb; 12(2):172-7. PubMed ID: 5450756
    [No Abstract]   [Full Text] [Related]  

  • 13. [Possible participation of light meromyosin components in the contraction-relaxation cycle. I. Effect of cholinesterase inhibitors and 1st column fraction of light meromyosin on glycerinated muscle fibers].
    Kalamkarova MB; Nankina VP; Kofman EB
    Biofizika; 1968; 13(5):838-40. PubMed ID: 5754772
    [No Abstract]   [Full Text] [Related]  

  • 14. [Production of glycerinated models of muscle fibers with phosphorylated myosin light chains].
    Lebedeva NN; Wrotek M; Shuvalova LA; Konkol I; Borovikov IuS
    Tsitologiia; 1987 Aug; 29(8):973-5. PubMed ID: 3686672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of troponin in the mechanism of muscular contraction.
    Chaplain RA
    Acta Biol Med Ger; 1970; 24(4):483-95. PubMed ID: 4249734
    [No Abstract]   [Full Text] [Related]  

  • 16. [Change in the ATPase activity of glycerinated muscle fibers under the influence of urethane].
    Kovaleva TA
    Tsitologiia; 1976 Aug; 18(8):1032-4. PubMed ID: 136078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Possible causes of self-relaxation of glycerinated muscle fibers].
    Bukatina AE
    Biofizika; 1971; 16(5):857-64. PubMed ID: 4256871
    [No Abstract]   [Full Text] [Related]  

  • 18. The relaxation of glycerinated rabbit psoas muscle fibres by EGTA.
    Abbott RH
    J Physiol; 1966 Oct; 186(2):115P-116P. PubMed ID: 4226413
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of crosslinking on glycerinated muscle fibres by formaldehyde & glutaraldehyde.
    Dubey SS
    Indian J Biochem; 1970 Jun; 7(2):136-7. PubMed ID: 4248653
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparative studies on the enzymological and contractile properties of glycerinated muscle fibers and actomyosin suspensions.
    Kaldor G; DiBattista W; Nuler L
    Physiol Chem Phys; 1982; 14(2):125-8. PubMed ID: 6223326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.