These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Self-Consistent Scheme Combining MD and Order- Ishii Y; Matubayasi N J Chem Theory Comput; 2020 Jan; 16(1):651-665. PubMed ID: 31873016 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Brønsted acids. Miran MS; Kinoshita H; Yasuda T; Susan MA; Watanabe M Phys Chem Chem Phys; 2012 Apr; 14(15):5178-86. PubMed ID: 22415497 [TBL] [Abstract][Full Text] [Related]
11. Key factor governing the physicochemical properties and extent of proton transfer in protic ionic liquids: ΔpK Miran MS; Hoque M; Yasuda T; Tsuzuki S; Ueno K; Watanabe M Phys Chem Chem Phys; 2018 Dec; 21(1):418-426. PubMed ID: 30534757 [TBL] [Abstract][Full Text] [Related]
12. Controlling the subtle energy balance in protic ionic liquids: dispersion forces compete with hydrogen bonds. Fumino K; Fossog V; Stange P; Paschek D; Hempelmann R; Ludwig R Angew Chem Int Ed Engl; 2015 Feb; 54(9):2792-5. PubMed ID: 25639210 [TBL] [Abstract][Full Text] [Related]
13. Experimental Investigation on Thermophysical Properties of Ammonium-Based Protic Ionic Liquids and Their Potential Ability towards CO Zailani NHZO; Yunus NM; Ab Rahim AH; Bustam MA Molecules; 2022 Jan; 27(3):. PubMed ID: 35164113 [TBL] [Abstract][Full Text] [Related]
14. Influence of residual water and cation acidity on the ionic transport mechanism in proton-conducting ionic liquids. Lin J; Wang L; Zinkevich T; Indris S; Suo Y; Korte C Phys Chem Chem Phys; 2020 Jan; 22(3):1145-1153. PubMed ID: 31774423 [TBL] [Abstract][Full Text] [Related]
15. Electroanalysis of Neutral Precursors in Protic Ionic Liquids and Synthesis of High-Ionicity Ionic Liquids. Goodwin SE; Smith DE; Gibson JS; Jones RG; Walsh DA Langmuir; 2017 Aug; 33(34):8436-8446. PubMed ID: 28780867 [TBL] [Abstract][Full Text] [Related]
16. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide. Zhong X; Liu Z; Cao D J Phys Chem B; 2011 Aug; 115(33):10027-40. PubMed ID: 21751818 [TBL] [Abstract][Full Text] [Related]
17. Observation of highly decoupled conductivity in protic ionic conductors. Wojnarowska Z; Wang Y; Paluch KJ; Sokolov AP; Paluch M Phys Chem Chem Phys; 2014 May; 16(19):9123-7. PubMed ID: 24699717 [TBL] [Abstract][Full Text] [Related]
18. Charge transport in highly acidic glass-forming protic ionic liquids tailored by zwitterionic precursors. You J; Li BY; De Borggraeve W; Wübbenhorst M J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37877495 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. Kowsari MH; Alavi S; Ashrafizaadeh M; Najafi B J Chem Phys; 2008 Dec; 129(22):224508. PubMed ID: 19071929 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical Properties of Various 2-Hydroxyethylammonium Sulfonate -Based Protic Ionic Liquids and Their Potential Application in Hydrodeoxygenation. Cai G; Yang S; Zhou Q; Liu L; Lu X; Xu J; Zhang S Front Chem; 2019; 7():196. PubMed ID: 31024888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]