BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28157150)

  • 1. Trypanocidal Activity of Quinoxaline 1,4 Di-N-oxide Derivatives as Trypanothione Reductase Inhibitors.
    Chacón-Vargas KF; Nogueda-Torres B; Sánchez-Torres LE; Suarez-Contreras E; Villalobos-Rocha JC; Torres-Martinez Y; Lara-Ramirez EE; Fiorani G; Krauth-Siegel RL; Bolognesi ML; Monge A; Rivera G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28157150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro and In Silico Analysis of New n-Butyl and Isobutyl Quinoxaline-7-carboxylate 1,4-di-
    González-González A; Sánchez-Sánchez O; Krauth-Siegel RL; Bolognesi ML; Gớmez-Escobedo R; Nogueda-Torres B; Vázquez-Jiménez LK; Saavedra E; Encalada R; Espinoza-Hicks JC; Paz-González AD; Rivera G
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis and molecular docking of trypanocidal aryloxy-quinones in trypanothione and glutathione reductases: a comparison with biochemical data.
    Vera B; Vázquez K; Mascayano C; Tapia RA; Espinosa V; Soto-Delgado J; Salas CO; Paulino M
    J Biomol Struct Dyn; 2017 Jun; 35(8):1785-1803. PubMed ID: 27232454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the effect of methyl 2-acetamide-3-methylquinoxaline-7-carboxylate 1,4-di-N-oxide on the relative expression of the trypanothione reductase gene in Trypanosoma cruzi epimastigotes.
    Vazquez-Jimenez LKK; Hernandez-Posada MI; Paz-Gonzalez AD; Nogueda-Torres B; Martinez-Vazquez AV; Herrera-Mayorga V; Bocanegra-Garcia V; Rivera GR
    Pak J Pharm Sci; 2019 May; 32(3 Special):1447-1452. PubMed ID: 31551230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of potential trypanothione reductase inhibitors among commercially available β-carboline derivatives using chemical space, lead-like and drug-like filters, pharmacophore models and molecular docking.
    Rodríguez-Becerra J; Cáceres-Jensen L; Hernández-Ramos J; Barrientos L
    Mol Divers; 2017 Aug; 21(3):697-711. PubMed ID: 28656524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and biological evaluation of quinoxaline di-N-oxide derivatives with in vitro trypanocidal activity.
    Pérez-Silanes S; Torres E; Arbillaga L; Varela J; Cerecetto H; González M; Azqueta A; Moreno-Viguri E
    Bioorg Med Chem Lett; 2016 Feb; 26(3):903-906. PubMed ID: 26750255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase.
    Arias DG; Herrera FE; Garay AS; Rodrigues D; Forastieri PS; Luna LE; Bürgi MD; Prieto C; Iglesias AA; Cravero RM; Guerrero SA
    Eur J Med Chem; 2017 Jan; 125():1088-1097. PubMed ID: 27810595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and 2D-QSAR studies of neolignan-based diaryl-tetrahydrofuran and -furan analogues with remarkable activity against Trypanosoma cruzi and assessment of the trypanothione reductase activity.
    Hartmann AP; de Carvalho MR; Bernardes LSC; Moraes MH; de Melo EB; Lopes CD; Steindel M; da Silva JS; Carvalho I
    Eur J Med Chem; 2017 Nov; 140():187-199. PubMed ID: 28926763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents.
    Elizondo-Jimenez S; Moreno-Herrera A; Reyes-Olivares R; Dorantes-Gonzalez E; Nogueda-Torres B; Oliveira EAG; Romeiro NC; Lima LM; Palos I; Rivera G
    Med Chem; 2017; 13(2):149-158. PubMed ID: 27396731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arylfurans as potential trypanosoma cruzi trypanothione reductase inhibitors.
    de Oliveira RB; Vaz AB; Alves RO; Liarte DB; Donnici CL; Romanha AJ; Zani CL
    Mem Inst Oswaldo Cruz; 2006 Mar; 101(2):169-73. PubMed ID: 16830710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypanocidal bisbenzylisoquinoline alkaloids are inhibitors of trypanothione reductase.
    Fournet A; Inchausti A; Yaluff G; Rojas De Arias A; Guinaudeau H; Bruneton J; Breidenbach MA; Karplus PA; Faerman CH
    J Enzyme Inhib; 1998 Feb; 13(1):1-9. PubMed ID: 9879510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives.
    Villalobos-Rocha JC; Sánchez-Torres L; Nogueda-Torres B; Segura-Cabrera A; García-Pérez CA; Bocanegra-García V; Palos I; Monge A; Rivera G
    Parasitol Res; 2014 Jun; 113(6):2027-35. PubMed ID: 24691716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors.
    Bond CS; Zhang Y; Berriman M; Cunningham ML; Fairlamb AH; Hunter WN
    Structure; 1999 Jan; 7(1):81-9. PubMed ID: 10368274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trypanothione Reductase and Superoxide Dismutase as Current Drug Targets for Trypanosoma cruzi: An Overview of Compounds with Activity against Chagas Disease.
    Beltran-Hortelano I; Perez-Silanes S; Galiano S
    Curr Med Chem; 2017 May; 24(11):1066-1138. PubMed ID: 28025938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines with N-(3-phenylpropyl) substituents are effective competitive inhibitors of trypanothione reductase and trypanocidal agents.
    Li Z; Fennie MW; Ganem B; Hancock MT; Kobaslija M; Rattendi D; Bacchi CJ; O'Sullivan MC
    Bioorg Med Chem Lett; 2001 Jan; 11(2):251-4. PubMed ID: 11206471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR) and display trypanocidal activity.
    Uliassi E; Fiorani G; Krauth-Siegel RL; Bergamini C; Fato R; Bianchini G; Carlos Menéndez J; Molina MT; López-Montero E; Falchi F; Cavalli A; Gul S; Kuzikov M; Ellinger B; Witt G; Moraes CB; Freitas-Junior LH; Borsari C; Costi MP; Bolognesi ML
    Eur J Med Chem; 2017 Dec; 141():138-148. PubMed ID: 29031061
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Matadamas-Martínez F; Hernández-Campos A; Téllez-Valencia A; Vázquez-Raygoza A; Comparán-Alarcón S; Yépez-Mulia L; Castillo R
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity.
    Salmon-Chemin L; Buisine E; Yardley V; Kohler S; Debreu MA; Landry V; Sergheraert C; Croft SL; Krauth-Siegel RL; Davioud-Charvet E
    J Med Chem; 2001 Feb; 44(4):548-65. PubMed ID: 11170645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESR, electrochemical, molecular modeling and biological evaluation of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones as potential anti-Trypanosoma cruzi agents.
    Aguilera-Venegas B; Olea-Azar C; Norambuena E; Arán VJ; Mendizábal F; Lapier M; Maya JD; Kemmerling U; López-Muñoz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1004-12. PubMed ID: 21239218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanothione Reductase: A Target for the Development of Anti- Trypanosoma cruzi Drugs.
    Vázquez K; Paulino M; Salas CO; Zarate-Ramos JJ; Vera B; Rivera G
    Mini Rev Med Chem; 2017; 17(11):939-946. PubMed ID: 28302040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.