These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28157229)

  • 21. Evaporation of Sessile Water Droplets on Horizontal and Vertical Biphobic Patterned Surfaces.
    Qi W; Li J; Weisensee PB
    Langmuir; 2019 Dec; 35(52):17185-17192. PubMed ID: 31809043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaporating drops on patterned surfaces: transition from pinned to moving triple line.
    Anantharaju N; Panchagnula M; Neti S
    J Colloid Interface Sci; 2009 Sep; 337(1):176-82. PubMed ID: 19501369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.
    Dash S; Garimella SV
    Langmuir; 2013 Aug; 29(34):10785-95. PubMed ID: 23952149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pinning-Free Evaporation of Sessile Droplets of Water from Solid Surfaces.
    Armstrong S; McHale G; Ledesma-Aguilar R; Wells GG
    Langmuir; 2019 Feb; 35(8):2989-2996. PubMed ID: 30702296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.
    Zhang J; Müller-Plathe F; Leroy F
    Langmuir; 2015 Jul; 31(27):7544-52. PubMed ID: 26090782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous separation and evaporation mechanism of self-rewetting fluid droplets on chemically stripe-patterned surfaces: A lattice Boltzmann study.
    Yu Y; Yin Z; Li Q; Tang S
    Phys Rev E; 2022 Nov; 106(5-2):055104. PubMed ID: 36559489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation.
    Hong SD; Ha MY; Balachandar S
    J Colloid Interface Sci; 2009 Nov; 339(1):187-95. PubMed ID: 19691965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water microdroplets on molecularly tailored surfaces: correlation between wetting hysteresis and evaporation mode switching.
    Soolaman DM; Yu HZ
    J Phys Chem B; 2005 Sep; 109(38):17967-73. PubMed ID: 16853306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.
    Slovin MR; Shirts MR
    Langmuir; 2015 Jul; 31(29):7980-90. PubMed ID: 26110823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding wetting dynamics and stability of aqueous droplet over superhydrophilic spot surrounded by superhydrophobic surface.
    Majhy B; Singh VP; Sen AK
    J Colloid Interface Sci; 2020 Apr; 565():582-591. PubMed ID: 31982724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaporative characteristics of sessile nanofluid droplet on micro-structured heated surface.
    Zhu GP; Ong KS; Chong KS; Yao JF; Huang HL; Duan F
    Electrophoresis; 2019 Mar; 40(6):845-850. PubMed ID: 30318774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depinning force of a receding droplet on pillared superhydrophobic surfaces: Analytical models.
    Sarshar MA; Jiang Y; Xu W; Choi CH
    J Colloid Interface Sci; 2019 May; 543():122-129. PubMed ID: 30782518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water Drop Evaporation on Mushroom-like Superhydrophobic Surfaces: Temperature Effects.
    do Nascimento RM; Cottin-Bizonne C; Pirat C; Ramos SM
    Langmuir; 2016 Mar; 32(8):2005-9. PubMed ID: 26854562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction.
    Annavarapu RK; Kim S; Wang M; Hart AJ; Sojoudi H
    Sci Rep; 2019 Jan; 9(1):405. PubMed ID: 30674992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pinning-depinning of the contact line during drop evaporation on textured surfaces: A lattice Boltzmann study.
    Jannati K; Rahimian MH; Moradi M
    Phys Rev E; 2020 Sep; 102(3-1):033106. PubMed ID: 33075889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS).
    Guan JH; Wells GG; Xu B; McHale G; Wood D; Martin J; Stuart-Cole S
    Langmuir; 2015 Nov; 31(43):11781-9. PubMed ID: 26446177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of temperature and surfactants on evaporation and contact line dynamics of sessile drops.
    Bennacer R; Ma X
    Heliyon; 2022 Nov; 8(11):e11716. PubMed ID: 36444267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Receding Contact Line Motion on Nanopatterned and Micropatterned Polymer Surfaces.
    Gao N; Chiu M; Neto C
    Langmuir; 2017 Nov; 33(44):12602-12608. PubMed ID: 29016148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.