These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28157258)

  • 1. Remote Regulation of Membrane Channel Activity by Site-Specific Localization of Lanthanide-Doped Upconversion Nanocrystals.
    Ai X; Lyu L; Zhang Y; Tang Y; Mu J; Liu F; Zhou Y; Zuo Z; Liu G; Xing B
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3031-3035. PubMed ID: 28157258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Core-shell Lanthanide-doped Upconversion Nanocrystals for Cellular Applications.
    Ai X; Lyu L; Mu J; Hu M; Wang Z; Xing B
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics.
    Wang Z; Hu M; Ai X; Zhang Z; Xing B
    Adv Biosyst; 2019 Jan; 3(1):e1800233. PubMed ID: 32627341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Selective Cation Exchange Strategy for the Synthesis of Colloidal Yb
    Creutz SE; Fainblat R; Kim Y; De Siena MC; Gamelin DR
    J Am Chem Soc; 2017 Aug; 139(34):11814-11824. PubMed ID: 28750510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation.
    Mei Q; Bansal A; Jayakumar MKG; Zhang Z; Zhang J; Huang H; Yu D; Ramachandra CJA; Hausenloy DJ; Soong TW; Zhang Y
    Nat Commun; 2019 Sep; 10(1):4416. PubMed ID: 31562321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the upconversion luminescence, Lewis acid catalytic and photothermal properties of lanthanide-based nanomaterials for chemical and polymerization reactions.
    Wu X; Yeow EKL
    Phys Chem Chem Phys; 2022 May; 24(19):11455-11470. PubMed ID: 35514325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging ≈800 nm Excited Lanthanide-Doped Upconversion Nanoparticles.
    Xie X; Li Z; Zhang Y; Guo S; Pendharkar AI; Lu M; Huang L; Huang W; Han G
    Small; 2017 Feb; 13(6):. PubMed ID: 27982542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Integration of Upconverting Nanocrystal-Dendrimer Composites for Folate Receptor-Specific NIR Imaging and Light-Triggered Drug Release.
    Wong PT; Chen D; Tang S; Yanik S; Payne M; Mukherjee J; Coulter A; Tang K; Tao K; Sun K; Baker JR; Choi SK
    Small; 2015 Dec; 11(45):6078-90. PubMed ID: 26476917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a Near-Infrared-Activatable Enzyme Platform To Remotely Trigger Intracellular Signal Transduction Using an Upconversion Nanoparticle.
    Gao HD; Thanasekaran P; Chiang CW; Hong JL; Liu YC; Chang YH; Lee HM
    ACS Nano; 2015 Jul; 9(7):7041-51. PubMed ID: 26102426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous silica-coated upconversion nanocrystals for near infrared light-triggered control of gene expression in zebrafish.
    Jayakumar MK; Bansal A; Li BN; Zhang Y
    Nanomedicine (Lond); 2015; 10(7):1051-61. PubMed ID: 25929564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy.
    Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J
    Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlative cathodoluminescence and near-infrared fluorescence imaging for bridging from nanometer to millimeter scale bioimaging.
    Niioka H; Fukushima S; Ichimiya M; Ashida M; Miyake J; Araki T; Hashimoto M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i29. PubMed ID: 25359828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monodispersed LaF3 nanocrystals: shape-controllable synthesis, excitation-power-dependent multi-color tuning and intense near-infrared upconversion emission.
    Rao L; Lu W; Ren G; Wang H; Yi Z; Liu H; Zeng S
    Nanotechnology; 2014 Feb; 25(6):065703. PubMed ID: 24434274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding.
    Huang K; Idris NM; Zhang Y
    Small; 2016 Feb; 12(7):836-52. PubMed ID: 26681103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanide-doped nanocrystals: strategies for improving the efficiency of upconversion emission and their physical understanding.
    Kar A; Kundu S; Patra A
    Chemphyschem; 2015 Feb; 16(3):505-21. PubMed ID: 25534436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote-control photoswitching using NIR light.
    Carling CJ; Boyer JC; Branda NR
    J Am Chem Soc; 2009 Aug; 131(31):10838-9. PubMed ID: 19722663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer in lanthanide upconversion studies for extended optical applications.
    Dong H; Sun LD; Yan CH
    Chem Soc Rev; 2015 Mar; 44(6):1608-34. PubMed ID: 25242465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping.
    Dou Q; Zhang Y
    Langmuir; 2011 Nov; 27(21):13236-41. PubMed ID: 21919438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging.
    Nagarajan S; Zhang Y
    Nanotechnology; 2011 Sep; 22(39):395101. PubMed ID: 21891842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals.
    Wang F; Liu X
    Chem Soc Rev; 2009 Apr; 38(4):976-89. PubMed ID: 19421576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.