These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28157264)

  • 1. High-Performance Chemically Regenerative Redox Fuel Cells Using a NO
    Han SB; Kwak DH; Park HS; Choi IA; Park JY; Kim SJ; Kim MC; Hong S; Park KW
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):2893-2897. PubMed ID: 28157264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.
    Berber MR; Hafez IH; Fujigaya T; Nakashima N
    Sci Rep; 2015 Nov; 5():16711. PubMed ID: 26594045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed Bipolar Electrodes for Spatial Separation of H
    Goodwin S; Walsh DA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23654-23661. PubMed ID: 28654236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.
    Su C; Shao Z; Lin Y; Wu Y; Wang H
    Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.
    Xiao G; Wang S; Lin Y; Zhang Y; An K; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19990-6. PubMed ID: 25333295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O
    Anson CW; Stahl SS
    Chem Rev; 2020 Apr; 120(8):3749-3786. PubMed ID: 32216295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Performance Palladium Supported on Nanoporous Carbon under Anhydrous Condition.
    Yang Z; Ling Y; Zhang Y; Xu G
    Sci Rep; 2016 Nov; 6():36521. PubMed ID: 27811971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.
    Wu W; Zhang Y; Ding D; He T
    Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29218736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped co-PPy/C as cathode electrocatalyst.
    Yuan X; Zeng X; Zhang HJ; Ma ZF; Wang CY
    J Am Chem Soc; 2010 Feb; 132(6):1754-5. PubMed ID: 20092339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.
    Sherrell PC; Zhang W; Zhao J; Wallace GG; Chen J; Minett AI
    ChemSusChem; 2012 Jul; 5(7):1233-40. PubMed ID: 22696244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ durability of various carbon supports against carbon corrosion during fuel starvation in a PEM fuel cell cathode.
    Lee G; Choi H; Tak Y
    Nanotechnology; 2019 Feb; 30(8):085402. PubMed ID: 30523913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.
    Li W; Bonakdarpour A; Gyenge E; Wilkinson DP
    ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.
    Chen Y; Bellini M; Bevilacqua M; Fornasiero P; Lavacchi A; Miller HA; Wang L; Vizza F
    ChemSusChem; 2015 Feb; 8(3):524-33. PubMed ID: 25504942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-induced surface area and conductivity modulation of carbon nanohorn and its function as an efficient metal-free oxygen reduction electrocatalyst for anion-exchange membrane fuel cells.
    Unni SM; Bhange SN; Illathvalappil R; Mutneja N; Patil KR; Kurungot S
    Small; 2015 Jan; 11(3):352-60. PubMed ID: 25155361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes.
    Varcoe JR; Slade RC; Wright GL; Chen Y
    J Phys Chem B; 2006 Oct; 110(42):21041-9. PubMed ID: 17048923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.
    Yuan Y; Shin H; Kang C; Kim S
    Bioelectrochemistry; 2016 Apr; 108():8-12. PubMed ID: 26599210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer Electrolyte Fuel Cells Employing Heteropolyacids as Redox Mediators for Oxygen Reduction Reactions: Pt-Free Cathode Systems.
    Matsui T; Morikawa E; Nakada S; Okanishi T; Muroyama H; Hirao Y; Takahashi T; Eguchi K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18119-25. PubMed ID: 27348019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.
    Zhao X; Zhu JY
    ChemSusChem; 2016 Jan; 9(2):197-207. PubMed ID: 26692572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthraquinone-Mediated Fuel Cell Anode with an Off-Electrode Heterogeneous Catalyst Accessing High Power Density when Paired with a Mediated Cathode.
    Preger Y; Johnson MR; Biswas S; Anson CW; Root TW; Stahl SS
    ACS Energy Lett; 2020 May; 5(5):1407-1412. PubMed ID: 32856004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.