These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28157288)

  • 21. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling.
    Gottschalk F; Kost E; Nowack B
    Environ Toxicol Chem; 2013 Jun; 32(6):1278-87. PubMed ID: 23418073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials.
    Boyes WK; Thornton BLM; Al-Abed SR; Andersen CP; Bouchard DC; Burgess RM; Hubal EAC; Ho KT; Hughes MF; Kitchin K; Reichman JR; Rogers KR; Ross JA; Rygiewicz PT; Scheckel KG; Thai SF; Zepp RG; Zucker RM
    Crit Rev Toxicol; 2017 Oct; 47(9):767-810. PubMed ID: 28661217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probabilistic material flow analysis of released nano titanium dioxide in Mexico.
    Ortiz-Galvez LM; Caballero-Guzman A; Lopes C; Alfaro-Moreno E
    NanoImpact; 2024 Jul; 35():100516. PubMed ID: 38838766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential scenarios for nanomaterial release and subsequent alteration in the environment.
    Nowack B; Ranville JF; Diamond S; Gallego-Urrea JA; Metcalfe C; Rose J; Horne N; Koelmans AA; Klaine SJ
    Environ Toxicol Chem; 2012 Jan; 31(1):50-9. PubMed ID: 22038832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting environmental concentrations of nanomaterials for exposure assessment - a review.
    Keller AA; Zheng Y; Praetorius A; Quik JTK; Nowack B
    NanoImpact; 2024 Jan; 33():100496. PubMed ID: 38266914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probabilistic modeling of the flows and environmental risks of nano-silica.
    Wang Y; Kalinina A; Sun T; Nowack B
    Sci Total Environ; 2016 Mar; 545-546():67-76. PubMed ID: 26745294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland.
    Hincapié I; Caballero-Guzman A; Hiltbrunner D; Nowack B
    Waste Manag; 2015 Sep; 43():398-406. PubMed ID: 26164852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies.
    Gottschalk F; Sun T; Nowack B
    Environ Pollut; 2013 Oct; 181():287-300. PubMed ID: 23856352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probabilistic modelling of nanobiomaterial release from medical applications into the environment.
    Hauser M; Nowack B
    Environ Int; 2021 Jan; 146():106184. PubMed ID: 33137704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model.
    Garner KL; Suh S; Keller AA
    Environ Sci Technol; 2017 May; 51(10):5541-5551. PubMed ID: 28443660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment.
    Giese B; Klaessig F; Park B; Kaegi R; Steinfeldt M; Wigger H; von Gleich A; Gottschalk F
    Sci Rep; 2018 Jan; 8(1):1565. PubMed ID: 29371617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flows of engineered nanomaterials through the recycling process in Switzerland.
    Caballero-Guzman A; Sun T; Nowack B
    Waste Manag; 2015 Feb; 36():33-43. PubMed ID: 25524750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semi-quantitative analysis of solid waste flows from nano-enabled consumer products in Europe, Denmark and the United Kingdom - Abundance, distribution and management.
    Heggelund L; Hansen SF; Astrup TF; Boldrin A
    Waste Manag; 2016 Oct; 56():584-92. PubMed ID: 27311351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influences of use activities and waste management on environmental releases of engineered nanomaterials.
    Wigger H; Hackmann S; Zimmermann T; Köser J; Thöming J; von Gleich A
    Sci Total Environ; 2015 Dec; 535():160-71. PubMed ID: 25728395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size-Specific, Dynamic, Probabilistic Material Flow Analysis of Titanium Dioxide Releases into the Environment.
    Zheng Y; Nowack B
    Environ Sci Technol; 2021 Feb; 55(4):2392-2402. PubMed ID: 33541069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exposure modeling of engineered nanoparticles in the environment.
    Mueller NC; Nowack B
    Environ Sci Technol; 2008 Jun; 42(12):4447-53. PubMed ID: 18605569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.
    Wang Y; Deng L; Caballero-Guzman A; Nowack B
    Nanotoxicology; 2016 Dec; 10(10):1545-1554. PubMed ID: 27781563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.