BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 28157297)

  • 1. Identifying Functional Cysteine Residues in the Mitochondria.
    Bak DW; Pizzagalli MD; Weerapana E
    ACS Chem Biol; 2017 Apr; 12(4):947-957. PubMed ID: 28157297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution mass spectrometry characterization of the oxidation pattern of methionine and cysteine residues in rat liver mitochondria voltage-dependent anion selective channel 3 (VDAC3).
    Saletti R; Reina S; Pittalà MG; Belfiore R; Cunsolo V; Messina A; De Pinto V; Foti S
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):301-311. PubMed ID: 27989743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrogation of Functional Mitochondrial Cysteine Residues by Quantitative Mass Spectrometry.
    Bak DW; Weerapana E
    Methods Mol Biol; 2019; 1967():211-227. PubMed ID: 31069773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Redox-Sensitive Cysteine Residues in Mitochondria.
    Kisty EA; Saart EC; Weerapana E
    Antioxidants (Basel); 2023 Apr; 12(5):. PubMed ID: 37237858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection.
    Murray CI; Kane LA; Uhrigshardt H; Wang SB; Van Eyk JE
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.004721. PubMed ID: 21036925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.
    Giese J; Eirich J; Post F; Schwarzländer M; Finkemeier I
    Methods Mol Biol; 2022; 2363():215-234. PubMed ID: 34545496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Cysteine Redox States in Mitochondrial Proteins in Intact Mammalian Cells.
    Habich M; Riemer J
    Methods Mol Biol; 2017; 1567():105-138. PubMed ID: 28276016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining fluorescence detection and mass spectrometric analysis for comprehensive and quantitative analysis of redox-sensitive cysteines in native membrane proteins.
    Petrotchenko EV; Pasek D; Elms P; Dokholyan NV; Meissner G; Borchers CH
    Anal Chem; 2006 Dec; 78(23):7959-66. PubMed ID: 17134128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).
    Gu L; Robinson RA
    Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation and reduction of cysteines in the intermembrane space of mitochondria: multiple facets of redox control.
    Herrmann JM; Riemer J
    Antioxid Redox Signal; 2010 Nov; 13(9):1323-6. PubMed ID: 20504153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differently Tagged Probes for Protein Profiling of Mitochondria.
    Dong J; Hong D; Lang W; Huang J; Qian L; Zhu Q; Li L; Ge J
    Chembiochem; 2019 May; 20(9):1155-1160. PubMed ID: 30600897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Click chemistry-based thiol redox proteomics reveals significant cysteine reduction induced by chronic ethanol consumption.
    Harris PS; McGinnis CD; Michel CR; Marentette JO; Reisdorph R; Roede JR; Fritz KS
    Redox Biol; 2023 Aug; 64():102792. PubMed ID: 37390786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel oxidative modifications in redox-active cysteine residues.
    Jeong J; Jung Y; Na S; Jeong J; Lee E; Kim MS; Choi S; Shin DH; Paek E; Lee HY; Lee KJ
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.000513. PubMed ID: 21148632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.
    Yao C; Behring JB; Shao D; Sverdlov AL; Whelan SA; Elezaby A; Yin X; Siwik DA; Seta F; Costello CE; Cohen RA; Matsui R; Colucci WS; McComb ME; Bachschmid MM
    PLoS One; 2015; 10(12):e0144025. PubMed ID: 26642319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.