These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28157345)

  • 1. Franson Interference Generated by a Two-Level System.
    Peiris M; Konthasinghe K; Muller A
    Phys Rev Lett; 2017 Jan; 118(3):030501. PubMed ID: 28157345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Demonstration of Conjugate-Franson Interferometry.
    Chen C; Shapiro JH; Wong FNC
    Phys Rev Lett; 2021 Aug; 127(9):093603. PubMed ID: 34506171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Violation of Bell's inequality with photons from independent sources.
    Pittman TB; Franson JD
    Phys Rev Lett; 2003 Jun; 90(24):240401. PubMed ID: 12857180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indistinguishability of temporally separated pairwise two-photon state of thermal photons in Franson-type interferometry.
    Park J; Kim H; Moon HS
    Sci Rep; 2022 Mar; 12(1):5456. PubMed ID: 35361833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-visibility Franson interference of time-energy entangled photon pairs from warm atomic ensemble.
    Park J; Kim D; Kim H; Moon HS
    Opt Lett; 2019 Aug; 44(15):3681-3684. PubMed ID: 31368942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.
    Kwon O; Park KK; Ra YS; Kim YS; Kim YH
    Opt Express; 2013 Oct; 21(21):25492-500. PubMed ID: 24150388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement formation and violation of Bell's inequality with a semiconductor single photon source.
    Fattal D; Inoue K; Vucković J; Santori C; Solomon GS; Yamamoto Y
    Phys Rev Lett; 2004 Jan; 92(3):037903. PubMed ID: 14753911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum interferometry using coherent beam stimulated parametric down-conversion.
    Kolkiran A; Agarwal GS
    Opt Express; 2008 Apr; 16(9):6479-85. PubMed ID: 18545352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Hong-Ou-Mandel experiment.
    Lopes R; Imanaliev A; Aspect A; Cheneau M; Boiron D; Westbrook CI
    Nature; 2015 Apr; 520(7545):66-8. PubMed ID: 25832404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Violation of a Bell-like inequality in single-neutron interferometry.
    Hasegawa Y; Loidl R; Badurek G; Baron M; Rauch H
    Nature; 2003 Sep; 425(6953):45-8. PubMed ID: 12955134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-Dot Single-Photon Sources for Entanglement Enhanced Interferometry.
    Müller M; Vural H; Schneider C; Rastelli A; Schmidt OG; Höfling S; Michler P
    Phys Rev Lett; 2017 Jun; 118(25):257402. PubMed ID: 28696738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the inhomogeneous broadening of a bi-exciton state in a quantum dot using Franson-type nonlocal interference.
    Sun YN; Zou Y; Chen G; Tang JS; Ni HQ; Li MF; Zha GW; Niu ZC; Han YJ; Li CF; Guo GC
    Opt Express; 2017 Feb; 25(3):1778-1788. PubMed ID: 29519031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots.
    Proux R; Maragkou M; Baudin E; Voisin C; Roussignol P; Diederichs C
    Phys Rev Lett; 2015 Feb; 114(6):067401. PubMed ID: 25723243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.
    Zhang Z; Mower J; Englund D; Wong FN; Shapiro JH
    Phys Rev Lett; 2014 Mar; 112(12):120506. PubMed ID: 24724641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphoton interference with a quantum dot entangled light source.
    Stevenson RM; Hudson AJ; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Opt Express; 2007 May; 15(10):6507-12. PubMed ID: 19546958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-time entanglement generation in optical fibers under CW pumping.
    Dong S; Zhou Q; Zhang W; He Y; Zhang W; You L; Huang Y; Peng J
    Opt Express; 2014 Jan; 22(1):359-68. PubMed ID: 24514996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon interference with a semiconductor integrated source at room temperature.
    Caillet X; Orieux A; Lemaître A; Filloux P; Favero I; Leo G; Ducci S
    Opt Express; 2010 May; 18(10):9967-75. PubMed ID: 20588851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum interference of electrically generated single photons from a quantum dot.
    Patel RB; Bennett AJ; Cooper K; Atkinson P; Nicoll CA; Ritchie DA; Shields AJ
    Nanotechnology; 2010 Jul; 21(27):274011. PubMed ID: 20571198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Interference between Light Sources Separated by 150 Million Kilometers.
    Deng YH; Wang H; Ding X; Duan ZC; Qin J; Chen MC; He Y; He YM; Li JP; Li YH; Peng LC; Matekole ES; Byrnes T; Schneider C; Kamp M; Wang DW; Dowling JP; Höfling S; Lu CY; Scully MO; Pan JW
    Phys Rev Lett; 2019 Aug; 123(8):080401. PubMed ID: 31491194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically driven source of time-energy entangled photons based on a self-pumped silicon microring resonator.
    Garrisi F; Sabattoli FA; Sam S; Barone A; Massara MP; Pirzio F; Morichetti F; Melloni A; Liscidini M; Galli M; Bajoni D
    Opt Lett; 2020 May; 45(10):2768-2771. PubMed ID: 32412462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.